Librería:
CitiRetail, Stevenage, Reino Unido
Calificación del vendedor: 5 de 5 estrellas
Vendedor de AbeBooks desde 29 de junio de 2022
Paperback. This book is an introduction to the use of machine learning and data-driven approaches in fluid simulation and animation, as an alternative to traditional modeling techniques based on partial differential equations and numerical methods and at a lower computational cost.This work starts with a brief review of computability theory, aimed to convince the reader more specifically, researchers of more traditional areas of mathematical modeling about the power of neural computing in fluid animations. In these initial chapters, fluid modeling through Navier-Stokes equations and numerical methods are also discussed.The following chapters explore the advantages of the neural networks approach and show the building blocks of neural networks for fluid simulation. They cover aspects related to training data, data augmentation, and testing. The volume completes with two case studies, one involving Lagrangian simulation of fluids using convolutional neural networks and the other using Generative Adversarial Networks (GANs) approaches. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. N° de ref. del artículo 9783031423321
Acerca del autor:
Gilson Antonio Giraldi is a Researcher at the National Laboratory for Scientific Computing (LNCC), Brazil, where he is responsible for academic research projects in image analysis, statistical and machine learning, scientific visualization, and physically-based animation. He holds a PhD in Computer Graphics (2000) from the Federal University of Rio de Janeiro, Brazil, and has a degree in Mathematics (1986) from the Pontifical Catholic University of Campinas, Brazil.
Antonio Lopes Apolinário Junior is an Associate Professor at the Federal University of Bahia (UFBA), Brazil. He holds a PhD in Systems and Computer Engineering (2004) from the Federal University of Rio de Janeiro, Brazil. His research interests lie in computer graphics, 3D modeling, augmented reality, virtual reality, and physically-based rendering and animation.
Leandro Tavares da Silva is a Professor at the Federal Center for Technological Education “Celso Suckow da Fonseca” (CEFET-RJ), Brazil. He holds a PhD in Computational Modeling (2016) from the National Laboratory for Scientific Computing (LNCC), Brazil. He currently does research on fluid simulation and animation, and deep learning.
Liliane Rodrigues de Almeida is a Fellow Researcher at the National Laboratory for Scientific Computing (LNCC). She holds a Master’s degree in Computer Science (2017) from the Federal University of Juiz de Fora (UFJF), Brazil, and has a degree in Computer Science from the same university. Her fields of research are physical simulation and computational geometry.
Título: Deep Learning for Fluid Simulation and ...
Editorial: Springer International Publishing AG, Cham
Año de publicación: 2023
Encuadernación: Paperback
Condición: new
Librería: Buchpark, Trebbin, Alemania
Condición: Hervorragend. Zustand: Hervorragend | Seiten: 180 | Sprache: Englisch | Produktart: Bücher. Nº de ref. del artículo: 42808253/1
Cantidad disponible: 1 disponibles
Librería: moluna, Greven, Alemania
Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Discloses the use of machine learning in fluid simulation as an option of lower computational costOffers a comparison between two neural network approaches and corresponding modelsIntended for students and researchers who need to keep pace . Nº de ref. del artículo: 945398630
Cantidad disponible: Más de 20 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Taschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book is an introduction to the use of machine learning and data-driven approaches in fluid simulation and animation, as an alternative to traditional modeling techniques based on partial differential equations and numerical methods - and at a lower computational cost.This work starts with a brief review of computability theory, aimed to convince the reader - more specifically, researchers of more traditional areas of mathematical modeling - about the power of neural computing in fluid animations. In these initial chapters, fluid modeling through Navier-Stokes equations and numerical methods are also discussed.The following chapters explore the advantages of the neural networks approach and show the building blocks of neural networks for fluid simulation. They cover aspects related to training data, data augmentation, and testing.The volume completes with two case studies, one involving Lagrangian simulation of fluids using convolutional neural networks and the other using Generative Adversarial Networks (GANs) approaches. Nº de ref. del artículo: 9783031423321
Cantidad disponible: 1 disponibles
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book is an introduction to the use of machine learning and data-driven approaches in fluid simulation and animation, as an alternative to traditional modeling techniques based on partial differential equations and numerical methods - and at a lower computational cost.This work starts with a brief review of computability theory, aimed to convince the reader - more specifically, researchers of more traditional areas of mathematical modeling - about the power of neural computing in fluid animations. In these initial chapters, fluid modeling through Navier-Stokes equations and numerical methods are also discussed.The following chapters explore the advantages of the neural networks approach and show the building blocks of neural networks for fluid simulation. They cover aspects related to training data, data augmentation, and testing.The volume completes with two case studies, one involving Lagrangian simulation of fluids using convolutional neural networks and the other using Generative Adversarial Networks (GANs) approaches. 164 pp. Englisch. Nº de ref. del artículo: 9783031423321
Cantidad disponible: 2 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 46831944-n
Cantidad disponible: Más de 20 disponibles
Librería: BargainBookStores, Grand Rapids, MI, Estados Unidos de America
Paperback or Softback. Condición: New. Deep Learning for Fluid Simulation and Animation: Fundamentals, Modeling, and Case Studies 0.57. Book. Nº de ref. del artículo: BBS-9783031423321
Cantidad disponible: 5 disponibles
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
Condición: New. Nº de ref. del artículo: 46831944-n
Cantidad disponible: Más de 20 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9783031423321_new
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 46831944
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 46831944
Cantidad disponible: Más de 20 disponibles