Deep Generative Modeling
Jakub M. Tomczak
Vendido por AHA-BUCH GmbH, Einbeck, Alemania
Vendedor de AbeBooks desde 14 de agosto de 2006
Nuevos - Encuadernación de tapa dura
Condición: Neu
Cantidad disponible: 1 disponibles
Añadir al carritoVendido por AHA-BUCH GmbH, Einbeck, Alemania
Vendedor de AbeBooks desde 14 de agosto de 2006
Condición: Neu
Cantidad disponible: 1 disponibles
Añadir al carritoNeuware - This textbook tackles the problem of formulating AI systems by combining probabilistic modeling and deep learning. Moreover, it goes beyond typical predictive modeling and brings together supervised learning and unsupervised learning. The resulting paradigm, called deep generative modeling, utilizes the generative perspective on perceiving the surrounding world. It assumes that each phenomenon is driven by an underlying generative process that defines a joint distribution over random variables and their stochastic interactions, i.e., how events occur and in what order. The adjective 'deep' comes from the fact that the distribution is parameterized using deep neural networks. There are two distinct traits of deep generative modeling. First, the application of deep neural networks allows rich and flexible parameterization of distributions. Second, the principled manner of modeling stochastic dependencies using probability theory ensures rigorous formulation and prevents potential flaws in reasoning. Moreover, probability theory provides a unified framework where the likelihood function plays a crucial role in quantifying uncertainty and defining objective functions.Deep Generative Modeling is designed to appeal to curious students, engineers, and researchers with a modest mathematical background in undergraduate calculus, linear algebra, probability theory, and the basics in machine learning, deep learning, and programming in Python and PyTorch (or other deep learning libraries). It will appeal to students and researchers from a variety of backgrounds, including computer science, engineering, data science, physics, and bioinformatics, who wish to become familiar with deep generative modeling. To engage the reader, the book introduces fundamental concepts with specific examples and code snippets. The full code accompanying the book is available on github.The ultimate aim of the book is to outline the most important techniques in deep generative modeling and, eventually, enable readers to formulate new models and implement them.
N° de ref. del artículo 9783030931575
This textbook tackles the problem of formulating AI systems by combining probabilistic modeling and deep learning. Moreover, it goes beyond typical predictive modeling and brings together supervised learning and unsupervised learning. The resulting paradigm, called deep generative modeling, utilizes the generative perspective on perceiving the surrounding world. It assumes that each phenomenon is driven by an underlying generative process that defines a joint distribution over random variables and their stochastic interactions, i.e., how events occur and in what order. The adjective "deep" comes from the fact that the distribution is parameterized using deep neural networks. There are two distinct traits of deep generative modeling. First, the application of deep neural networks allows rich and flexible parameterization of distributions. Second, the principled manner of modeling stochastic dependencies using probability theory ensures rigorous formulation and prevents potential flaws in reasoning. Moreover, probability theory provides a unified framework where the likelihood function plays a crucial role in quantifying uncertainty and defining objective functions.
Deep Generative Modeling is designed to appeal to curious students, engineers, and researchers with a modest mathematical background in undergraduate calculus, linear algebra, probability theory, and the basics in machine learning, deep learning, and programming in Python and PyTorch (or other deep learning libraries). It will appeal to students and researchers from a variety of backgrounds, including computer science, engineering, data science, physics, and bioinformatics, who wish to become familiar with deep generative modeling. To engage the reader, the book introduces fundamental concepts with specific examples and code snippets. The full code accompanying the book is available on github.
The ultimate aim of the book is to outline the most important techniques in deep generative modeling and, eventually, enable readers to formulate new models and implement them.
"Sobre este título" puede pertenecer a otra edición de este libro.
Ver la página web de la librería
Términos y Condiciones Generales e Información del Cliente / Política de Privacidad
I. Términos y Condiciones Generales
§ 1 Disposiciones básicas
(1)Los siguientes términos y condiciones se aplican a todos los contratos que celebre con nosotros como proveedor (AHA-BUCH GmbH) a través de las plataformas de Internet AbeBooks y/o ZVAB. A menos que se acuerde lo contrario, se objetará la inclusión de cualquiera de sus propios términos y condiciones utilizados por usted.
(2)Un consumidor en el sentid...
Enviamos su pedido después de recibirlos
para artículos disponibles las últimas 24 horas,
para artículos con suministro nocturno a más tardar 48 horas.
En caso de que necesitemos pedir un artículo a nuestro proveedor, nuestro tiempo de envío depende de la fecha de recepción de los artículos, pero los artículos se enviarán el mismo día.
Nuestro objetivo es enviar los artículos pedidos de la manera más rápida, pero también más eficiente y segura a nuestros clientes.