This self-contained textbook gives a thorough exposition of multivariable calculus. The emphasis is on correlating general concepts and results of multivariable calculus with their counterparts in one-variable calculus. Further, the book includes genuine analogues of basic results in one-variable calculus, such as the mean value theorem and the fundamental theorem of calculus.
This book is distinguished from others on the subject: it examines topics not typically covered, such as monotonicity, bimonotonicity, and convexity, together with their relation to partial differentiation, cubature rules for approximate evaluation of double integrals, and conditional as well as unconditional convergence of double series and improper double integrals. Each chapter contains detailed proofs of relevant results, along with numerous examples and a wide collection of exercises of varying degrees of difficulty, making the book useful to undergraduate and graduate students alike.
Sudhir R. Ghorpade is Institute Chair Professor in the Department of Mathematics at the Indian Institute of Technology (IIT) Bombay. He has received several awards, including the All India Council for Technical Education (AICTE) Career Award for Young Teachers and the Prof. S.C. Bhattacharya Award for Excellence in Pure Sciences. His research interests lie in algebraic geometry, combinatorics, coding theory, and commutative algebra.
Balmohan V. Limaye is Professor Emeritus in the Department of Mathematics at the Indian Institute of Technology (IIT) Bombay. He is the author of several research monographs and textbooks, including Linear Functional Analysis for Scientists and Engineers (Springer, 2016). He worked at IIT Bombay for more than 40 years and has twice received the Award for Excellence in Teaching from IIT Bombay. His research interests include Banach algebras, approximation theory, numerical functional analysis, and linear algebra.
The authors’ companion volume A Course in Calculus and Real Analysis, 2e (2018) is also in the UTM series.