Librería:
Biblios, Frankfurt am main, HESSE, Alemania
Calificación del vendedor: 4 de 5 estrellas
Vendedor de AbeBooks desde 10 de septiembre de 2024
PRINT ON DEMAND pp. 164. N° de ref. del artículo 18375506457
This book is dealing with three mathematical areas, namely polynomial matrices over finite fields, linear systems and coding theory. Primeness properties of polynomial matrices provide criteria for the reachability and observability of interconnected linear systems. Since time-discrete linear systems over finite fields and convolutional codes are basically the same objects, these results could be transferred to criteria for non-catastrophicity of convolutional codes. In particular, formulas for the number of pairwise coprime polynomials and for the number of mutually left coprime polynomial matrices are calculated. This leads to the probability that a parallel connected linear system is reachable and that a parallel connected convolutional code is non-catastrophic. Moreover, other networks of linear systems and convolutional codes are considered.
Reseña del editor: This book is dealing with three mathematical areas, namely polynomial matrices over finite fields, linear systems and coding theory. Primeness properties of polynomial matrices provide criteria for the reachability and observability of interconnected linear systems. Since time-discrete linear systems over finite fields and convolutional codes are basically the same objects, these results could be transferred to criteria for non-catastrophicity of convolutional codes. In particular, formulas for the number of pairwise coprime polynomials and for the number of mutually left coprime polynomial matrices are calculated. This leads to the probability that a parallel connected linear system is reachable and that a parallel connected convolutional code is non-catastrophic. Moreover, other networks of linear systems and convolutional codes are considered.
Título: Counting Polynomial Matrices over Finite ...
Editorial: Wurzburg University Press
Año de publicación: 2017
Encuadernación: Encuadernación de tapa blanda
Condición: New
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
Taschenbuch. Condición: Neu. Neuware -This book is dealing with three mathematical areas, namely polynomial matrices over finite fields, linear systems and coding theory.Primeness properties of polynomial matrices provide criteria for the reachability and observability of interconnected linear systems. Since time-discrete linear systems over finite fields and convolutional codes are basically the same objects, these results could be transferred to criteria for non-catastrophicity of convolutional codes.In particular, formulas for the number of pairwise coprime polynomials and for the number of mutually left coprime polynomial matrices are calculated. This leads to the probability that a parallel connected linear system is reachable and that a parallel connected convolutional code is non-catastrophic. Moreover, other networks of linear systems and convolutional codes are considered.Books on Demand GmbH, Überseering 33, 22297 Hamburg 164 pp. Englisch. Nº de ref. del artículo: 9783958260641
Cantidad disponible: 2 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Taschenbuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - This book is dealing with three mathematical areas, namely polynomial matrices over finite fields, linear systems and coding theory.Primeness properties of polynomial matrices provide criteria for the reachability and observability of interconnected linear systems. Since time-discrete linear systems over finite fields and convolutional codes are basically the same objects, these results could be transferred to criteria for non-catastrophicity of convolutional codes.In particular, formulas for the number of pairwise coprime polynomials and for the number of mutually left coprime polynomial matrices are calculated. This leads to the probability that a parallel connected linear system is reachable and that a parallel connected convolutional code is non-catastrophic. Moreover, other networks of linear systems and convolutional codes are considered. Nº de ref. del artículo: 9783958260641
Cantidad disponible: 1 disponibles
Librería: moluna, Greven, Alemania
Kartoniert / Broschiert. Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Über den AutorrnrnGeboren 1988 in Kronach, M.Sc. (Mathematik), Studium der Faecher Mathematik, Katholische Theologie und Erziehungswissenschaften (Staatsexamen)KlappentextrnrnThis book is dealing with three mathematical a. Nº de ref. del artículo: 449799731
Cantidad disponible: Más de 20 disponibles
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book is dealing with three mathematical areas, namely polynomial matrices over finite fields, linear systems and coding theory.Primeness properties of polynomial matrices provide criteria for the reachability and observability of interconnected linear systems. Since time-discrete linear systems over finite fields and convolutional codes are basically the same objects, these results could be transferred to criteria for non-catastrophicity of convolutional codes.In particular, formulas for the number of pairwise coprime polynomials and for the number of mutually left coprime polynomial matrices are calculated. This leads to the probability that a parallel connected linear system is reachable and that a parallel connected convolutional code is non-catastrophic. Moreover, other networks of linear systems and convolutional codes are considered. 164 pp. Englisch. Nº de ref. del artículo: 9783958260641
Cantidad disponible: 2 disponibles
Librería: preigu, Osnabrück, Alemania
Taschenbuch. Condición: Neu. Counting Polynomial Matrices over Finite Fields | Matrices with Certain Primeness Properties and Applications to Linear Systems and Coding Theory | Julia Lieb | Taschenbuch | 164 S. | Englisch | 2017 | Würzburg University Press | EAN 9783958260641 | Verantwortliche Person für die EU: Julius-Maximilians-Universität, Würzburg University Press - Universitätsbibliothek, Am Hubland 1, 97074 Würzburg, wup[at]uni-wuerzburg[dot]de | Anbieter: preigu Print on Demand. Nº de ref. del artículo: 109725620
Cantidad disponible: 5 disponibles
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
Condición: New. Nº de ref. del artículo: ABLIING23Apr0316110177890
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 30145015-n
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 30145015
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
Condición: New. Nº de ref. del artículo: 30145015-n
Cantidad disponible: Más de 20 disponibles
Librería: PBShop.store UK, Fairford, GLOS, Reino Unido
PAP. Condición: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Nº de ref. del artículo: L0-9783958260641
Cantidad disponible: Más de 20 disponibles