Librería:
Books Puddle, New York, NY, Estados Unidos de America
Calificación del vendedor: 4 de 5 estrellas
Vendedor de AbeBooks desde 22 de noviembre de 2018
pp. 106. N° de ref. del artículo 2697146582
Recommender systems are an important part of the information and e-commerce ecosystem. They represent a powerful method for enabling users to filter through large information and product spaces. Nearly two decades of research on collaborative filtering have led to a varied set of algorithms and a rich collection of tools for evaluating their performance. Research in the field is moving in the direction of a richer understanding of how recommender technology may be embedded in specific domains. The differing personalities exhibited by different recommender algorithms show that recommendation is not a one-size-fits-all problem. Specific tasks, information needs, and item domains represent unique problems for recommenders, and design and evaluation of recommenders needs to be done based on the user tasks to be supported. Effective deployments must begin with careful analysis of prospective users and their goals. Based on this analysis, system designers have a host of options for the choice of algorithm and for its embedding in the surrounding user experience.Collaborative Filtering Recommender Systems provides a broad overview of the current state of collaborative filtering research. It discusses the core algorithms for collaborative filtering and traditional means of measuring their performance against user rating data sets. It then moves on to discuss building reliable, accurate data sets; understanding recommender systems in the broader context of user information needs and task support; and the interaction between users and recommender systems.Collaborative Filtering Recommender Systems provides both practitioners and researchers with an introduction to the important issues underlying recommenders and current best practices for addressing these issues.
Reseña del editor: Recommender systems are an important part of the information and e-commerce ecosystem. They represent a powerful method for enabling users to filter through large information and product spaces. Nearly two decades of research on collaborative filtering have led to a varied set of algorithms and a rich collection of tools for evaluating their performance. Research in the field is moving in the direction of a richer understanding of how recommender technology may be embedded in specific domains. The differing personalities exhibited by different recommender algorithms show that recommendation is not a one-size-fits-all problem. Specific tasks, information needs, and item domains represent unique problems for recommenders, and design and evaluation of recommenders needs to be done based on the user tasks to be supported. Effective deployments must begin with careful analysis of prospective users and their goals. Based on this analysis, system designers have a host of options for the choice of algorithm and for its embedding in the surrounding user experience. Collaborative Filtering Recommender Systems provides a broad overview of the current state of collaborative filtering research. It discusses the core algorithms for collaborative filtering and traditional means of measuring their performance against user rating data sets. It then moves on to discuss building reliable, accurate data sets; understanding recommender systems in the broader context of user information needs and task support; and the interaction between users and recommender systems. Collaborative Filtering Recommender Systems provides both practitioners and researchers with an introduction to the important issues underlying recommenders and current best practices for addressing these issues.
Título: Collaborative Filtering Recommender Systems
Editorial: Now Publishers
Año de publicación: 2011
Encuadernación: Encuadernación de tapa blanda
Condición: New
Librería: preigu, Osnabrück, Alemania
Taschenbuch. Condición: Neu. PLSA BASED FRAMEWORK FOR HYBRID SOCIAL RECOMMENDER SYSTEMS | A mathematical framework to combine collaborative filtering and social network analysis | Erkin Eryol | Taschenbuch | Englisch | VDM Verlag Dr. Müller | EAN 9783639291636 | Verantwortliche Person für die EU: preigu GmbH & Co. KG, Lengericher Landstr. 19, 49078 Osnabrück, mail[at]preigu[dot]de | Anbieter: preigu Print on Demand. Nº de ref. del artículo: 107108497
Cantidad disponible: 5 disponibles
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 47618918
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 47618918
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 47618918-n
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
Condición: New. Nº de ref. del artículo: 47618918-n
Cantidad disponible: Más de 20 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: New. pp. 142. Nº de ref. del artículo: 394739633
Cantidad disponible: 3 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. pp. 142 1st edition NO-PA16APR2015-KAP. Nº de ref. del artículo: 26401637486
Cantidad disponible: 3 disponibles
Librería: Biblios, Frankfurt am main, HESSE, Alemania
Condición: New. pp. 142. Nº de ref. del artículo: 18401637476
Cantidad disponible: 3 disponibles
Librería: preigu, Osnabrück, Alemania
Buch. Condición: Neu. Collaborative Filtering | Recommender Systems | Angshul Majumdar | Buch | Einband - fest (Hardcover) | Englisch | 2024 | CRC Press | EAN 9781032840826 | Verantwortliche Person für die EU: Libri GmbH, Europaallee 1, 36244 Bad Hersfeld, gpsr[at]libri[dot]de | Anbieter: preigu Print on Demand. Nº de ref. del artículo: 128870327
Cantidad disponible: 5 disponibles
Librería: Revaluation Books, Exeter, Reino Unido
Hardcover. Condición: Brand New. 152 pages. 9.19x6.13x9.21 inches. In Stock. Nº de ref. del artículo: x-103284082X
Cantidad disponible: 2 disponibles