Collaborative Filtering Recommender Systems (Foundations and Trends(r) in Human-Computer Interaction)

Ekstrand, Michael D; Riedl, John T; Konstan, Joseph A

ISBN 10: 1601984421 ISBN 13: 9781601984425
Editorial: Now Publishers, 2011
Nuevos Encuadernación de tapa blanda

Librería: Ria Christie Collections, Uxbridge, Reino Unido Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Vendedor de AbeBooks desde 25 de marzo de 2015

Este libro ya no está disponible. Sin embargo, AbeBooks ofrece millones de libros. Escriba otros términos de búsqueda a continuación para encontrar ejemplares similares.

Descripción

Descripción:

In. N° de ref. del artículo ria9781601984425_new

Denunciar este artículo

Sinopsis:

Recommender systems are an important part of the information and e-commerce ecosystem. They represent a powerful method for enabling users to filter through large information and product spaces. Nearly two decades of research on collaborative filtering have led to a varied set of algorithms and a rich collection of tools for evaluating their performance. Research in the field is moving in the direction of a richer understanding of how recommender technology may be embedded in specific domains. The differing personalities exhibited by different recommender algorithms show that recommendation is not a one-size-fits-all problem. Specific tasks, information needs, and item domains represent unique problems for recommenders, and design and evaluation of recommenders needs to be done based on the user tasks to be supported. Effective deployments must begin with careful analysis of prospective users and their goals. Based on this analysis, system designers have a host of options for the choice of algorithm and for its embedding in the surrounding user experience.Collaborative Filtering Recommender Systems provides a broad overview of the current state of collaborative filtering research. It discusses the core algorithms for collaborative filtering and traditional means of measuring their performance against user rating data sets. It then moves on to discuss building reliable, accurate data sets; understanding recommender systems in the broader context of user information needs and task support; and the interaction between users and recommender systems.Collaborative Filtering Recommender Systems provides both practitioners and researchers with an introduction to the important issues underlying recommenders and current best practices for addressing these issues.

Reseña del editor: Recommender systems are an important part of the information and e-commerce ecosystem. They represent a powerful method for enabling users to filter through large information and product spaces. Nearly two decades of research on collaborative filtering have led to a varied set of algorithms and a rich collection of tools for evaluating their performance. Research in the field is moving in the direction of a richer understanding of how recommender technology may be embedded in specific domains. The differing personalities exhibited by different recommender algorithms show that recommendation is not a one-size-fits-all problem. Specific tasks, information needs, and item domains represent unique problems for recommenders, and design and evaluation of recommenders needs to be done based on the user tasks to be supported. Effective deployments must begin with careful analysis of prospective users and their goals. Based on this analysis, system designers have a host of options for the choice of algorithm and for its embedding in the surrounding user experience. Collaborative Filtering Recommender Systems provides a broad overview of the current state of collaborative filtering research. It discusses the core algorithms for collaborative filtering and traditional means of measuring their performance against user rating data sets. It then moves on to discuss building reliable, accurate data sets; understanding recommender systems in the broader context of user information needs and task support; and the interaction between users and recommender systems. Collaborative Filtering Recommender Systems provides both practitioners and researchers with an introduction to the important issues underlying recommenders and current best practices for addressing these issues.

"Sobre este título" puede pertenecer a otra edición de este libro.

Detalles bibliográficos

Título: Collaborative Filtering Recommender Systems ...
Editorial: Now Publishers
Año de publicación: 2011
Encuadernación: Encuadernación de tapa blanda
Condición: New

IberLibro.com es un mercado online donde puede comprar millones de libros antiguos, nuevos, usados, raros y agotados. Le ponemos en contacto con miles de librerías de todo el mundo. Comprar en IberLibro es fácil y 100% seguro. Busque un libro, realice el pedido a través de nuestra página con toda confianza y recíbalo directamente de la librería.

Busque entre millones de libros de miles de librerías

Libros usados

Libros usados

Bestsellers rebajados, autores destacados y una gran variedad de libros por menos de 5 €. Si su pasatiempo es leer, éste es su espacio.

Libros usados

Libros antiguos y de colección

Libros antiguos y de colección

Compendio vital para el amante del libro antiguo: libros firmados, primeras ediciones, facsímiles, librerías anticuarias o destacados.

Libros antiguos

Libros con envío gratis

Libros con envío gratis

Gastos de envío gratuitos para miles de libros nuevos, antiguos y de ocasión. Sin compra mínima.

Buscar libros

Descubra también: