Librería:
Ria Christie Collections, Uxbridge, Reino Unido
Calificación del vendedor: 5 de 5 estrellas
Vendedor de AbeBooks desde 25 de marzo de 2015
In. N° de ref. del artículo ria9783110516760_new
The problem of classifying the finite dimensional simple Lie algebras over fields of characteristic p > 0 is a long standing one. Work on this question has been directed by the Kostrikin Shafarevich Conjecture of 1966, which states that over an algebraically closed field of characteristic p > 5 a finite dimensional restricted simple Lie algebra is classical or of Cartan type. This conjecture was proved for p > 7 by Block and Wilson in 1988. The generalization of the Kostrikin-Shafarevich Conjecture for the general case of not necessarily restricted Lie algebras and p > 7 was announced in 1991 by Strade and Wilson and eventually proved by Strade in 1998. The final Block-Wilson-Strade-Premet Classification Theorem is a landmark result of modern mathematics and can be formulated as follows: Every simple finite dimensional simple Lie algebra over an algebraically closed field of characteristic p > 3 is of classical, Cartan, or Melikian type. This is the second part of a three-volume book about the classification of the simple Lie algebras over algebraically closed fields of characteristic > 3. The first volume contains the methods, examples and a first classification result. This second volume presents insight in the structure of tori of Hamiltonian and Melikian algebras. Based on sandwich element methods due to A. I. Kostrikin and A. A. Premet and the investigations of filtered and graded Lie algebras, a complete proof for the classification of absolute toral rank 2 simple Lie algebras over algebraically closed fields of characteristic > 3 is given. Contents Tori in Hamiltonian and Melikian algebras1-sectionsSandwich elements and rigid toriTowards graded algebrasThe toral rank 2 case
Acerca del autor: Helmut Strade, University of Hamburg, Germany.
Título: Classifying the Absolute Toral Rank Two Case...
Editorial: Walter de Gruyter
Año de publicación: 2017
Encuadernación: Encuadernación de tapa dura
Condición: New
Edición: 2ª Edición
Librería: Buchpark, Trebbin, Alemania
Condición: Sehr gut. Zustand: Sehr gut | Seiten: 394 | Sprache: Englisch | Produktart: Bücher | Keine Beschreibung verfügbar. Nº de ref. del artículo: 27805701/12
Cantidad disponible: 1 disponibles
Librería: moluna, Greven, Alemania
Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Helmut Strade, University of Hamburg, Germany. The problem of classifying the finite dimensional simple Lie algebras over fields of characteristic p > 0 is a long standing one. Work on this question has been directed . Nº de ref. del artículo: 131588428
Cantidad disponible: Más de 20 disponibles
Librería: preigu, Osnabrück, Alemania
Buch. Condición: Neu. Classifying the Absolute Toral Rank Two Case | Helmut Strade | Buch | VIII | Englisch | 2017 | De Gruyter | EAN 9783110516760 | Verantwortliche Person für die EU: Walter de Gruyter GmbH, De Gruyter GmbH, Genthiner Str. 13, 10785 Berlin, productsafety[at]degruyterbrill[dot]com | Anbieter: preigu Print on Demand. Nº de ref. del artículo: 108805942
Cantidad disponible: 5 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Buch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - The problem of classifying the finite dimensional simple Lie algebras over fields of characteristic p > 0 is a long standing one. Work on this question has been directed by the Kostrikin Shafarevich Conjecture of 1966, which states that over an algebraically closed field of characteristic p > 5 a finite dimensional restricted simple Lie algebra is classical or of Cartan type. This conjecture was proved for p > 7 by Block and Wilson in 1988. The generalization of the Kostrikin-Shafarevich Conjecture for the general case of not necessarily restricted Lie algebras and p > 7 was announced in 1991 by Strade and Wilson and eventually proved by Strade in 1998. The final Block-Wilson-Strade-Premet Classification Theorem is a landmark result of modern mathematics and can be formulated as follows: Every simple finite dimensional simple Lie algebra over an algebraically closed field of characteristic p > 3 is of classical, Cartan, or Melikian type. This is the second part of a three-volume book about the classification of the simple Lie algebras over algebraically closed fields of characteristic > 3. The first volume contains the methods, examples and a first classification result. This second volume presents insight in the structure of tori of Hamiltonian and Melikian algebras. Based on sandwich element methods due to A. I. Kostrikin and A. A. Premet and the investigations of filtered and graded Lie algebras, a complete proof for the classification of absolute toral rank 2 simple Lie algebras over algebraically closed fields of characteristic > 3 is given. Contents Tori in Hamiltonian and Melikian algebras1-sectionsSandwich elements and rigid toriTowards graded algebrasThe toral rank 2 case. Nº de ref. del artículo: 9783110516760
Cantidad disponible: 1 disponibles
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Buch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The problem of classifying the finite dimensional simple Lie algebras over fields of characteristic p > 0 is a long standing one. Work on this question has been directed by the Kostrikin Shafarevich Conjecture of 1966, which states that over an algebraically closed field of characteristic p > 5 a finite dimensional restricted simple Lie algebra is classical or of Cartan type. This conjecture was proved for p > 7 by Block and Wilson in 1988. The generalization of the Kostrikin-Shafarevich Conjecture for the general case of not necessarily restricted Lie algebras and p > 7 was announced in 1991 by Strade and Wilson and eventually proved by Strade in 1998. The final Block-Wilson-Strade-Premet Classification Theorem is a landmark result of modern mathematics and can be formulated as follows: Every simple finite dimensional simple Lie algebra over an algebraically closed field of characteristic p > 3 is of classical, Cartan, or Melikian type. This is the second part of a three-volume book about the classification of the simple Lie algebras over algebraically closed fields of characteristic > 3. The first volume contains the methods, examples and a first classification result. This second volume presents insight in the structure of tori of Hamiltonian and Melikian algebras. Based on sandwich element methods due to A. I. Kostrikin and A. A. Premet and the investigations of filtered and graded Lie algebras, a complete proof for the classification of absolute toral rank 2 simple Lie algebras over algebraically closed fields of characteristic > 3 is given. Contents Tori in Hamiltonian and Melikian algebras1-sectionsSandwich elements and rigid toriTowards graded algebrasThe toral rank 2 case 394 pp. Englisch. Nº de ref. del artículo: 9783110516760
Cantidad disponible: 1 disponibles
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
Buch. Condición: Neu. This item is printed on demand - Print on Demand Titel. Neuware -The problem of classifying the finite dimensional simple Lie algebras over fields of characteristic p > 0 is a long standing one. Work on this question has been directed by the Kostrikin Shafarevich Conjecture of 1966, which states that over an algebraically closed field of characteristic p > 5 a finite dimensional restricted simple Lie algebra is classical or of Cartan type. This conjecture was proved for p > 7 by Block and Wilson in 1988. The generalization of the Kostrikin-Shafarevich Conjecture for the general case of not necessarily restricted Lie algebras and p > 7 was announced in 1991 by Strade and Wilson and eventually proved by Strade in 1998. The final Block-Wilson-Strade-Premet Classification Theorem is a landmark result of modern mathematics and can be formulated as follows: Every simple finite dimensional simple Lie algebra over an algebraically closed field of characteristic p > 3 is of classical, Cartan, or Melikian type.This is the second part of a three-volume book about the classification of the simple Lie algebras over algebraically closed fields of characteristic > 3. The first volume contains the methods, examples and a first classification result. This second volume presents insight in the structure of tori of Hamiltonian and Melikian algebras. Based on sandwich element methods due to A. I. Kostrikin and A. A. Premet and the investigations of filtered and graded Lie algebras, a complete proof for the classification of absolute toral rank 2 simple Lie algebras over algebraically closed fields of characteristic > 3 is given.ContentsTori in Hamiltonian and Melikian algebras1-sectionsSandwich elements and rigid toriTowards graded algebrasThe toral rank 2 caseWalter de Gruyter GmbH, Genthiner Strasse 13, 10785 Berlin 394 pp. Englisch. Nº de ref. del artículo: 9783110516760
Cantidad disponible: 1 disponibles
Librería: PBShop.store UK, Fairford, GLOS, Reino Unido
HRD. Condición: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Nº de ref. del artículo: L1-9783110516760
Cantidad disponible: Más de 20 disponibles
Librería: PBShop.store US, Wood Dale, IL, Estados Unidos de America
HRD. Condición: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Nº de ref. del artículo: L1-9783110516760
Cantidad disponible: Más de 20 disponibles
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
Condición: New. Nº de ref. del artículo: ABLIING23Mar3113020055971
Cantidad disponible: Más de 20 disponibles
Librería: Rarewaves USA, OSWEGO, IL, Estados Unidos de America
Hardback. Condición: New. 2nd ed. The problem of classifying the finite dimensional simple Lie algebras over fields of characteristic p 0 is a long standing one. Work on this question has been directed by the Kostrikin Shafarevich Conjecture of 1966, which states that over an algebraically closed field of characteristic p 5 a finite dimensional restricted simple Lie algebra is classical or of Cartan type. This conjecture was proved for p 7 by Block and Wilson in 1988. The generalization of the Kostrikin-Shafarevich Conjecture for the general case of not necessarily restricted Lie algebras and p 7 was announced in 1991 by Strade and Wilson and eventually proved by Strade in 1998. The final Block-Wilson-Strade-Premet Classification Theorem is a landmark result of modern mathematics and can be formulated as follows: Every simple finite dimensional simple Lie algebra over an algebraically closed field of characteristic p 3 is of classical, Cartan, or Melikian type. This is the second part of a three-volume book about the classification of the simple Lie algebras over algebraically closed fields of characteristic 3. The first volume contains the methods, examples and a first classification result. This second volume presents insight in the structure of tori of Hamiltonian and Melikian algebras. Based on sandwich element methods due to A. I. Kostrikin and A. A. Premet and the investigations of filtered and graded Lie algebras, a complete proof for the classification of absolute toral rank 2 simple Lie algebras over algebraically closed fields of characteristic 3 is given. Contents Tori in Hamiltonian and Melikian algebras1-sectionsSandwich elements and rigid toriTowards graded algebrasThe toral rank 2 case. Nº de ref. del artículo: LU-9783110516760
Cantidad disponible: Más de 20 disponibles