Building Recommender Systems with Machine Learning and AI: Help people discover new products and content with deep learning, neural networks, and machine learning recommendations.

Kane, Frank

ISBN 13: 9798769079467
Editorial: Independently published, 2021
Usado Encuadernación de tapa blanda

Librería: MusicMagpie, Stockport, Reino Unido Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Vendedor de AbeBooks desde 4 de diciembre de 2017

Este libro ya no está disponible. Sin embargo, AbeBooks ofrece millones de libros. Escriba otros términos de búsqueda a continuación para encontrar ejemplares similares.

Descripción

Descripción:

N° de ref. del artículo U9798769079467

Denunciar este artículo

Sinopsis:

Learn how to build recommender systems from one of Amazon's pioneers in the field. Frank Kane spent over nine years at Amazon, where he managed and led the development of many of Amazon's personalized product recommendation technologies. This updated second edition covers the latest developments in the field from Google and Amazon, and the latest research in applying deep neural networks to recommender systems.

You've seen automated recommendations everywhere - on Netflix's home page, on YouTube, and on Amazon as these machine learning algorithms learn about your unique interests, and show the best products or content for you as an individual. These technologies have become central to the largest, most prestigious tech employers out there, and by understanding how they work, you'll become very valuable to them.

This book is adapted from Frank's popular online course published by Sundog Education, so you can expect lots of visual aids from its slides and a conversational, accessible tone throughout the book. The graphics and scripts from over 350 slides are included, and you'll have access to all of the source code associated with it as well.

We'll cover tried and true recommendation algorithms based on neighborhood-based collaborative filtering, and work our way up to more modern techniques including matrix factorization and even deep learning with artificial neural networks. Along the way, you'll learn from Frank's extensive industry experience to understand the real-world challenges you'll encounter when applying these algorithms at large scale and with real-world data.

This book is very hands-on; you'll develop your own framework for evaluating and combining many different recommendation algorithms together, and you'll even build your own neural networks using Tensorflow to generate recommendations from real-world movie ratings from real people.

We'll cover:

  • Building a recommendation engine
  • Evaluating recommender systems
  • Content-based filtering using item attributes
  • Neighborhood-based collaborative filtering with user-based, item-based, and KNN CF
  • Model-based methods including matrix factorization and SVD
  • Applying deep learning, AI, and artificial neural networks to recommendations
  • Session-based recommendations with recursive neural networks
  • Scaling to massive data sets with Apache Spark machine learning, Amazon DSSTNE deep learning, and AWS SageMaker with factorization machines
  • Using the Tensorflow Recommenders Framework (TFRS) to develop and deploy deep learning-based recommender systems
  • Using SaaS platforms such as Amazon Personalize, Recombee, and RichRelevance
  • Using Generative Adversarial Networks (GAN's) to generate user recommendations
  • Real-world challenges and solutions with recommender systems
  • Case studies from YouTube and Netflix
  • Building hybrid, ensemble recommenders
This comprehensive book takes you all the way from the early days of collaborative filtering, to bleeding-edge applications of deep neural networks and modern machine learning techniques for recommending the best items to every individual user
.
The coding exercises for this book use the Python programming language. We include an intro to Python if you're new to it, but you'll need some prior programming experience in order to use this book successfully. We also include a short introduction to deep learning, Tensorfow, and Keras if you are new to the field of artificial intelligence, but you'll need to be able to understand new computer algorithms.

Dive in, and learn about one of the most interesting and lucrative applications of machine learning and deep learning there is!

"Sobre este título" puede pertenecer a otra edición de este libro.

Detalles bibliográficos

Título: Building Recommender Systems with Machine ...
Editorial: Independently published
Año de publicación: 2021
Encuadernación: Encuadernación de tapa blanda
Condición: Very Good
Condición de la sobrecubierta: 45207349
Ejemplar firmado: 12/8/2023 3:25:27 PM
Edición: 1702049127.

IberLibro.com es un mercado online donde puede comprar millones de libros antiguos, nuevos, usados, raros y agotados. Le ponemos en contacto con miles de librerías de todo el mundo. Comprar en IberLibro es fácil y 100% seguro. Busque un libro, realice el pedido a través de nuestra página con toda confianza y recíbalo directamente de la librería.

Busque entre millones de libros de miles de librerías

Libros usados

Libros usados

Bestsellers rebajados, autores destacados y una gran variedad de libros por menos de 5 €. Si su pasatiempo es leer, éste es su espacio.

Libros usados

Libros antiguos y de colección

Libros antiguos y de colección

Compendio vital para el amante del libro antiguo: libros firmados, primeras ediciones, facsímiles, librerías anticuarias o destacados.

Libros antiguos

Libros con envío gratis

Libros con envío gratis

Gastos de envío gratuitos para miles de libros nuevos, antiguos y de ocasión. Sin compra mínima.

Buscar libros

Descubra también: