Librería:
MusicMagpie, Stockport, Reino Unido
Calificación del vendedor: 5 de 5 estrellas
Vendedor de AbeBooks desde 4 de diciembre de 2017
N° de ref. del artículo U9798769079467
Learn how to build recommender systems from one of Amazon's pioneers in the field. Frank Kane spent over nine years at Amazon, where he managed and led the development of many of Amazon's personalized product recommendation technologies. This updated second edition covers the latest developments in the field from Google and Amazon, and the latest research in applying deep neural networks to recommender systems.
You've seen automated recommendations everywhere - on Netflix's home page, on YouTube, and on Amazon as these machine learning algorithms learn about your unique interests, and show the best products or content for you as an individual. These technologies have become central to the largest, most prestigious tech employers out there, and by understanding how they work, you'll become very valuable to them.
This book is adapted from Frank's popular online course published by Sundog Education, so you can expect lots of visual aids from its slides and a conversational, accessible tone throughout the book. The graphics and scripts from over 350 slides are included, and you'll have access to all of the source code associated with it as well.
We'll cover tried and true recommendation algorithms based on neighborhood-based collaborative filtering, and work our way up to more modern techniques including matrix factorization and even deep learning with artificial neural networks. Along the way, you'll learn from Frank's extensive industry experience to understand the real-world challenges you'll encounter when applying these algorithms at large scale and with real-world data.
This book is very hands-on; you'll develop your own framework for evaluating and combining many different recommendation algorithms together, and you'll even build your own neural networks using Tensorflow to generate recommendations from real-world movie ratings from real people.
We'll cover:
Título: Building Recommender Systems with Machine ...
Editorial: Independently published
Año de publicación: 2021
Encuadernación: Encuadernación de tapa blanda
Condición: Very Good
Condición de la sobrecubierta: 45207349
Ejemplar firmado: 12/8/2023 3:25:27 PM
Edición: 1702049127.
IberLibro.com es un mercado online donde puede comprar millones de libros antiguos, nuevos, usados, raros y agotados. Le ponemos en contacto con miles de librerías de todo el mundo. Comprar en IberLibro es fácil y 100% seguro. Busque un libro, realice el pedido a través de nuestra página con toda confianza y recíbalo directamente de la librería.
Bestsellers rebajados, autores destacados y una gran variedad de libros por menos de 5 €. Si su pasatiempo es leer, éste es su espacio.
Compendio vital para el amante del libro antiguo: libros firmados, primeras ediciones, facsímiles, librerías anticuarias o destacados.
Gastos de envío gratuitos para miles de libros nuevos, antiguos y de ocasión. Sin compra mínima.