Librería:
Ria Christie Collections, Uxbridge, Reino Unido
Calificación del vendedor: 5 de 5 estrellas
Vendedor de AbeBooks desde 25 de marzo de 2015
In. N° de ref. del artículo ria9781601986986_new
Monte Carlo methods, in particular those based on Markov chains and on interacting particle systems, are by now tools that are routinely used in machine learning. These methods have had a profound impact on statistical inference in a wide range of application areas where probabilistic models are used. Moreover, there are many algorithms in machine learning that are based on the idea of processing the data sequentially; first in the forward direction, and then in the backward direction. Backward Simulation Methods for Monte Carlo Statistical Inference reviews a branch of Monte Carlo methods that are based on the forward-backward idea, and that are referred to as backward simulators. In recent years, the theory and practice of backward simulation algorithms have undergone a significant development, and the algorithms keep finding new applications. The foundation for these methods is sequential Monte Carlo (SMC). SMC-based backward simulators are capable of addressing smoothing problems in sequential latent variable models, such as general, nonlinear/non-Gaussian state-space models (SSMs). However, this book also clearly shows that the underlying backward simulation idea is by no means restricted to SSMs. Furthermore, backward simulation plays an important role in recent developments of Markov chain Monte Carlo (MCMC) methods. Particle MCMC is a systematic way of using SMC within MCMC. In this framework, backward simulation gives us a way to significantly improve the performance of the samplers. This monograph discusses several related backward-simulation-based methods for state inference as well as learning of static parameters, both using a frequentistic and a Bayesian approach. Backward Simulation Methods for Monte Carlo Statistical Inference is an excellent primer for anyone interested in this active research area.
Reseña del editor: Monte Carlo methods, in particular those based on Markov chains and on interacting particle systems, are by now tools that are routinely used in machine learning. These methods have had a profound impact on statistical inference in a wide range of application areas where probabilistic models are used. Moreover, there are many algorithms in machine learning that are based on the idea of processing the data sequentially; first in the forward direction, and then in the backward direction. Backward Simulation Methods for Monte Carlo Statistical Inference reviews a branch of Monte Carlo methods that are based on the forward-backward idea, and that are referred to as backward simulators. In recent years, the theory and practice of backward simulation algorithms have undergone a significant development, and the algorithms keep finding new applications. The foundation for these methods is sequential Monte Carlo (SMC). SMC-based backward simulators are capable of addressing smoothing problems in sequential latent variable models, such as general, nonlinear/non-Gaussian state-space models (SSMs). However, this book also clearly shows that the underlying backward simulation idea is by no means restricted to SSMs. Furthermore, backward simulation plays an important role in recent developments of Markov chain Monte Carlo (MCMC) methods. Particle MCMC is a systematic way of using SMC within MCMC. In this framework, backward simulation gives us a way to significantly improve the performance of the samplers. This monograph discusses several related backward-simulation-based methods for state inference as well as learning of static parameters, both using a frequentistic and a Bayesian approach. Backward Simulation Methods for Monte Carlo Statistical Inference is an excellent primer for anyone interested in this active research area.
Título: Backward Simulation Methods for Monte Carlo ...
Editorial: Now Publishers
Año de publicación: 2013
Encuadernación: Encuadernación de tapa blanda
Condición: New
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 20121098-n
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
Condición: New. Nº de ref. del artículo: 20121098-n
Cantidad disponible: Más de 20 disponibles
Librería: PBShop.store UK, Fairford, GLOS, Reino Unido
PAP. Condición: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Nº de ref. del artículo: IQ-9781601986986
Cantidad disponible: 15 disponibles
Librería: California Books, Miami, FL, Estados Unidos de America
Condición: New. Nº de ref. del artículo: I-9781601986986
Cantidad disponible: Más de 20 disponibles
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
Paperback / softback. Condición: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 262. Nº de ref. del artículo: C9781601986986
Cantidad disponible: Más de 20 disponibles
Librería: Rarewaves USA, OSWEGO, IL, Estados Unidos de America
Paperback. Condición: New. Illustrated. Nº de ref. del artículo: LU-9781601986986
Cantidad disponible: Más de 20 disponibles
Librería: Rarewaves USA United, OSWEGO, IL, Estados Unidos de America
Paperback. Condición: New. Illustrated. Nº de ref. del artículo: LU-9781601986986
Cantidad disponible: Más de 20 disponibles
Librería: moluna, Greven, Alemania
Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Inhaltsverzeichnis1: Introduction 2: Monte Carlo Preliminaries 3: Backward Simulation for State-space Models 4: Backward Simulation for General Sequential Models 5: Backward Simulation in Particle MCMC 6: Discussion. Acknowledgements. No. Nº de ref. del artículo: 4231633
Cantidad disponible: Más de 20 disponibles
Librería: Revaluation Books, Exeter, Reino Unido
Paperback. Condición: Brand New. 158 pages. 9.21x6.14x0.34 inches. In Stock. Nº de ref. del artículo: x-160198698X
Cantidad disponible: 2 disponibles
Librería: PBShop.store US, Wood Dale, IL, Estados Unidos de America
PAP. Condición: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Nº de ref. del artículo: L0-9781601986986
Cantidad disponible: Más de 20 disponibles