Artificial Neural Networks and Structural Equation

ISBN 10: 9811965110 ISBN 13: 9789811965111
Editorial: Springer, 2023
Nuevos Encuadernación de tapa blanda

Librería: Majestic Books, Hounslow, Reino Unido Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Vendedor de AbeBooks desde 19 de enero de 2007

Este artículo en concreto ya no está disponible.

Descripción

Descripción:

Print on Demand pp. 352. N° de ref. del artículo 397858153

Denunciar este artículo

Sinopsis:

This book goes into a detailed investigation of adapting artificial neural network (ANN) and structural equation modeling (SEM) techniques in marketing and consumer research. The aim of using a dual-stage SEM and ANN approach is to obtain linear and non-compensated relationships because the ANN method captures non-compensated relationships based on the black box technology of artificial intelligence. Hence, the ANN approach validates the results of the SEM method. In addition, such the novel emerging approach increases the validity of the prediction by determining the importance of the variables. Consequently, the number of studies using SEM-ANN has increased, but the different types of study cases that show customization of different processes in ANNs method combination with SEM are still unknown, and this aspect will be affecting to the generation results. Thus, there is a need for further investigation in marketing and consumer research. This book bridges the significant gap in this research area.

The adoption of SEM and ANN techniques in social commerce and consumer research is massive all over the world. Such an expansion has generated more need to learn how to capture linear and non-compensatory relationships in such area. This book would be a valuable reading companion mainly for business and management students in higher academic organizations, professionals, policy-makers, and planners in the field of marketing. This book would also be appreciated by researchers who are keenly interested in social commerce and consumer research.


Acerca del autor:

 Alhamzah Alnoor is a professional administrator with ten years of experience in organizational studies, social commerce, internship programs, multi-criteria decision analysis, leadership and innovation, strategic planning, and technology acceptance models. Successfully achieved several projects during my career with impactful business values. Creative, flexible, motivated with active optimism and belief in diversity and inclusion. He is a reviewer for many journals. He published many papers in different and high-impact journals. He is a senior lecturer at the Southern Technical University, Management Technical College. He received his M.B.A. from the University of Basrah, Iraq. He received his Ph.D. from the School of Management, Universiti Sains Malaysia, Malaysia.

Khaw Khai Wah is a senior lecturer in the School of Management, Universiti Sains Malaysia. He holds a Ph.D. in statistical quality control from Universiti Sains Malaysia. He is acoordinator of the Business Analytics Program in the School of Management, USM. His areas of research are in advanced analytics and statistical quality/process control. He has featured in prominent international publications. His efforts and excellence have been acknowledged and awarded at several dignified platforms. He is actively involved in conducting training in statistics and visualization. Prior to his academic career, he worked in a renowned US multinational company as a data analytics team leader.

Azizul Hassan is a member of the Tourism Consultants Network of the UK Tourism Society. Hassan’s areas of research interest are technology-supported marketing for tourism and hospitality, immersive technology application in the tourism and hospitality industry, and technology-influenced marketing suggestions for sustainable tourism and hospitality industry in developing countries. Hassan authored over 100 articles and book chapters in leading tourism outlets. He is also partof the editorial team of 20 book projects from Routledge, Springer, CAB International and Emerald Group Publishing Limited. Hassan is a regular reviewer of Tourism Management, Journal of Hospitality and Tourism Management, Tourism Analysis, the International Journal of Human Resource Management, Journal of Ecotourism, Journal of Business Research, eReview of Tourism Research (eRTR), International Interdisciplinary Business-Economics Advancement Journal, International Journal of Tourism Cities, Heliyon, Technology in Society, Anatolia, Journal of King Saud University - Computer and Information Sciences, and Tourism Recreation Research.


"Sobre este título" puede pertenecer a otra edición de este libro.

Detalles bibliográficos

Título: Artificial Neural Networks and Structural ...
Editorial: Springer
Año de publicación: 2023
Encuadernación: Encuadernación de tapa blanda
Condición: New

Los mejores resultados en AbeBooks

Imagen del vendedor

Publicado por Springer Nature Singapore, 2023
ISBN 10: 9811965110 ISBN 13: 9789811965111
Nuevo Tapa blanda
Impresión bajo demanda

Librería: moluna, Greven, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Fills the gap in the research on artificial neural networks and structural equation modeling for marketing Considers how the methods described could be utiliszed to promote green practices and social responsibilityConsiders future uses of A. Nº de ref. del artículo: 1215161341

Contactar al vendedor

Comprar nuevo

EUR 144,94
Convertir moneda
Gastos de envío: EUR 48,99
De Alemania a Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Publicado por Springer, 2023
ISBN 10: 9811965110 ISBN 13: 9789811965111
Nuevo Tapa blanda

Librería: Best Price, Torrance, CA, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. SUPER FAST SHIPPING. Nº de ref. del artículo: 9789811965111

Contactar al vendedor

Comprar nuevo

EUR 157,31
Convertir moneda
Gastos de envío: EUR 7,67
A Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen de archivo

Publicado por Springer, 2023
ISBN 10: 9811965110 ISBN 13: 9789811965111
Nuevo Tapa blanda

Librería: Ria Christie Collections, Uxbridge, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. In. Nº de ref. del artículo: ria9789811965111_new

Contactar al vendedor

Comprar nuevo

EUR 159,77
Convertir moneda
Gastos de envío: EUR 13,85
De Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

Alhamzah Alnoor
ISBN 10: 9811965110 ISBN 13: 9789811965111
Nuevo Taschenbuch
Impresión bajo demanda

Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book goes into a detailed investigation of adapting artificial neural network (ANN) and structural equation modeling (SEM) techniques in marketing and consumer research. The aim of using a dual-stage SEM and ANN approach is to obtain linear and non-compensated relationships because the ANN method captures non-compensated relationships based on the black box technology of artificial intelligence. Hence, the ANN approach validates the results of the SEM method. In addition, such the novel emerging approach increases the validity of the prediction by determining the importance of the variables. Consequently, the number of studies using SEM-ANN has increased, but the different types of study cases that show customization of different processes in ANNs method combination with SEM are still unknown, and this aspect will be affecting to the generation results. Thus, there is a need for further investigation in marketing and consumer research. This book bridges the significant gap in this research area. The adoption of SEM and ANN techniques in social commerce and consumer research is massive all over the world. Such an expansion has generated more need to learn how to capture linear and non-compensatory relationships in such area. This book would be a valuable reading companion mainly for business and management students in higher academic organizations, professionals, policy-makers, and planners in the field of marketing. This book would also be appreciated by researchers who are keenly interested in social commerce and consumer research. 352 pp. Englisch. Nº de ref. del artículo: 9789811965111

Contactar al vendedor

Comprar nuevo

EUR 171,19
Convertir moneda
Gastos de envío: EUR 23,00
De Alemania a Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen del vendedor

Alhamzah Alnoor
ISBN 10: 9811965110 ISBN 13: 9789811965111
Nuevo Taschenbuch
Impresión bajo demanda

Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. This item is printed on demand - Print on Demand Titel. Neuware -This book goes into a detailed investigation of adapting artificial neural network (ANN) and structural equation modeling (SEM) techniques in marketing and consumer research. The aim of using a dual-stage SEM and ANN approach is to obtain linear and non-compensated relationships because the ANN method captures non-compensated relationships based on the black box technology of artificial intelligence. Hence, the ANN approach validates the results of the SEM method. In addition, such the novel emerging approach increases the validity of the prediction by determining the importance of the variables. Consequently, the number of studies using SEM-ANN has increased, but the different types of study cases that show customization of different processes in ANNs method combination with SEM are still unknown, and this aspect will be affecting to the generation results. Thus, there is a need for further investigation in marketing and consumer research. This book bridges the significant gap in this research area.The adoption of SEM and ANN techniques in social commerce and consumer research is massive all over the world. Such an expansion has generated more need to learn how to capture linear and non-compensatory relationships in such area. This book would be a valuable reading companion mainly for business and management students in higher academic organizations, professionals, policy-makers, and planners in the field of marketing. This book would also be appreciated by researchers who are keenly interested in social commerce and consumer research.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 352 pp. Englisch. Nº de ref. del artículo: 9789811965111

Contactar al vendedor

Comprar nuevo

EUR 171,19
Convertir moneda
Gastos de envío: EUR 60,00
De Alemania a Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen del vendedor

Alhamzah Alnoor
ISBN 10: 9811965110 ISBN 13: 9789811965111
Nuevo Taschenbuch

Librería: AHA-BUCH GmbH, Einbeck, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book goes into a detailed investigation of adapting artificial neural network (ANN) and structural equation modeling (SEM) techniques in marketing and consumer research. The aim of using a dual-stage SEM and ANN approach is to obtain linear and non-compensated relationships because the ANN method captures non-compensated relationships based on the black box technology of artificial intelligence. Hence, the ANN approach validates the results of the SEM method. In addition, such the novel emerging approach increases the validity of the prediction by determining the importance of the variables. Consequently, the number of studies using SEM-ANN has increased, but the different types of study cases that show customization of different processes in ANNs method combination with SEM are still unknown, and this aspect will be affecting to the generation results. Thus, there is a need for further investigation in marketing and consumer research. This book bridges the significant gap in this research area. The adoption of SEM and ANN techniques in social commerce and consumer research is massive all over the world. Such an expansion has generated more need to learn how to capture linear and non-compensatory relationships in such area. This book would be a valuable reading companion mainly for business and management students in higher academic organizations, professionals, policy-makers, and planners in the field of marketing. This book would also be appreciated by researchers who are keenly interested in social commerce and consumer research. Nº de ref. del artículo: 9789811965111

Contactar al vendedor

Comprar nuevo

EUR 175,09
Convertir moneda
Gastos de envío: EUR 62,67
De Alemania a Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

Publicado por Springer, 2023
ISBN 10: 9811965110 ISBN 13: 9789811965111
Nuevo Tapa blanda

Librería: California Books, Miami, FL, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: I-9789811965111

Contactar al vendedor

Comprar nuevo

EUR 187,46
Convertir moneda
Gastos de envío: GRATIS
A Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Publicado por Springer, 2023
ISBN 10: 9811965110 ISBN 13: 9789811965111
Nuevo Tapa blanda
Impresión bajo demanda

Librería: Biblios, Frankfurt am main, HESSE, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. PRINT ON DEMAND pp. 352. Nº de ref. del artículo: 18398551740

Contactar al vendedor

Comprar nuevo

EUR 218,93
Convertir moneda
Gastos de envío: EUR 9,95
De Alemania a Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: 4 disponibles

Añadir al carrito

Imagen de archivo

Alnoor, Alhamzah (Editor)/ Wah, Khaw Khai (Editor)/ Hassan, Azizul (Editor)
Publicado por Springer Nature, 2023
ISBN 10: 9811965110 ISBN 13: 9789811965111
Nuevo Paperback

Librería: Revaluation Books, Exeter, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Paperback. Condición: Brand New. 350 pages. 9.25x6.10x0.80 inches. In Stock. Nº de ref. del artículo: x-9811965110

Contactar al vendedor

Comprar nuevo

EUR 245,16
Convertir moneda
Gastos de envío: EUR 28,91
De Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito