Librería:
Ria Christie Collections, Uxbridge, Reino Unido
Calificación del vendedor: 5 de 5 estrellas
Vendedor de AbeBooks desde 25 de marzo de 2015
In. N° de ref. del artículo ria9783034899567_new
This book gives a systematic treatment of the basic theory of analytic semigroups and abstract parabolic equations in general Banach spaces, and of how such a theory may be used in parabolic PDE's. It takes into account the developments of the theory during the last fifteen years, and it is focused on classical solutions, with continuous or Holder continuous derivatives. On one hand, working in spaces of continuous functions rather than in Lebesgue spaces seems to be appropriate in view of the number of parabolic problems arising in applied mathematics, where continuity has physical meaning; on the other hand it allows one to consider any type of nonlinearities (even of nonlocal type), even involving the highest order derivatives of the solution, avoiding the limitations on the growth of the nonlinear terms required by the LP approach. Moreover, the continuous space theory is, at present, sufficiently well established. For the Hilbert space approach we refer to J. L. LIONS - E. MAGENES [128], M. S. AGRANOVICH - M. l. VISHIK [14], and for the LP approach to V. A. SOLONNIKOV [184], P. GRISVARD [94], G. DI BLASIO [72], G. DORE - A. VENNI [76] and the subsequent papers [90], [169], [170]. Many books about abstract evolution equations and semigroups contain some chapters on analytic semigroups. See, e. g. , E. HILLE - R. S. PHILLIPS [100]' S. G. KREIN [114], K. YOSIDA [213], A. PAZY [166], H. TANABE [193], PH.
Reseña del editor: The book shows how the abstract methods of analytic semigroups and evolution equations in Banach spaces can be fruitfully applied to the study of parabolic problems. Particular attention is paid to optimal regularity results in linear equations. Furthermore, these results are used to study several other problems, especially fully nonlinear ones. Owing to the new unified approach chosen, known theorems are presented from a novel perspective and new results are derived. The book is self-contained. It is addressed to PhD students and researchers interested in abstract evolution equations and in parabolic partial differential equations and systems. It gives a comprehensive overview on the present state of the art in the field, teaching at the same time how to exploit its basic techniques.
Título: Analytic Semigroups and Optimal Regularity ...
Editorial: Birkhäuser
Año de publicación: 2011
Encuadernación: Encuadernación de tapa blanda
Condición: New
Librería: moluna, Greven, Alemania
Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. This book gives a systematic treatment of the basic theory of analytic semigroups and abstract parabolic equations in general Banach spaces, and of how such a theory may be used in parabolic PDE s. It takes into account the developments of the theory during. Nº de ref. del artículo: 4319754
Cantidad disponible: Más de 20 disponibles
Librería: preigu, Osnabrück, Alemania
Taschenbuch. Condición: Neu. Analytic Semigroups and Optimal Regularity in Parabolic Problems | Alessandra Lunardi | Taschenbuch | 424 S. | Englisch | 2011 | Birkhäuser | EAN 9783034899567 | Verantwortliche Person für die EU: Springer Basel AG in Springer Science + Business Media, Heidelberger Platz 3, 14197 Berlin, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu. Nº de ref. del artículo: 106332835
Cantidad disponible: 5 disponibles
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
Condición: New. Nº de ref. del artículo: ABLIING23Mar3113020039121
Cantidad disponible: Más de 20 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Taschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book gives a systematic treatment of the basic theory of analytic semigroups and abstract parabolic equations in general Banach spaces, and of how such a theory may be used in parabolic PDE's. It takes into account the developments of the theory during the last fifteen years, and it is focused on classical solutions, with continuous or Holder continuous derivatives. On one hand, working in spaces of continuous functions rather than in Lebesgue spaces seems to be appropriate in view of the number of parabolic problems arising in applied mathematics, where continuity has physical meaning; on the other hand it allows one to consider any type of nonlinearities (even of nonlocal type), even involving the highest order derivatives of the solution, avoiding the limitations on the growth of the nonlinear terms required by the LP approach. Moreover, the continuous space theory is, at present, sufficiently well established. For the Hilbert space approach we refer to J. L. LIONS - E. MAGENES [128], M. S. AGRANOVICH - M. l. VISHIK [14], and for the LP approach to V. A. SOLONNIKOV [184], P. GRISVARD [94], G. DI BLASIO [72], G. DORE - A. VENNI [76] and the subsequent papers [90], [169], [170]. Many books about abstract evolution equations and semigroups contain some chapters on analytic semigroups. See, e. g. , E. HILLE - R. S. PHILLIPS [100]' S. G. KREIN [114], K. YOSIDA [213], A. PAZY [166], H. TANABE [193], PH. Nº de ref. del artículo: 9783034899567
Cantidad disponible: 1 disponibles
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book gives a systematic treatment of the basic theory of analytic semigroups and abstract parabolic equations in general Banach spaces, and of how such a theory may be used in parabolic PDE's. It takes into account the developments of the theory during the last fifteen years, and it is focused on classical solutions, with continuous or Holder continuous derivatives. On one hand, working in spaces of continuous functions rather than in Lebesgue spaces seems to be appropriate in view of the number of parabolic problems arising in applied mathematics, where continuity has physical meaning; on the other hand it allows one to consider any type of nonlinearities (even of nonlocal type), even involving the highest order derivatives of the solution, avoiding the limitations on the growth of the nonlinear terms required by the LP approach. Moreover, the continuous space theory is, at present, sufficiently well established. For the Hilbert space approach we refer to J. L. LIONS - E. MAGENES [128], M. S. AGRANOVICH - M. l. VISHIK [14], and for the LP approach to V. A. SOLONNIKOV [184], P. GRISVARD [94], G. DI BLASIO [72], G. DORE - A. VENNI [76] and the subsequent papers [90], [169], [170]. Many books about abstract evolution equations and semigroups contain some chapters on analytic semigroups. See, e. g. , E. HILLE - R. S. PHILLIPS [100]' S. G. KREIN [114], K. YOSIDA [213], A. PAZY [166], H. TANABE [193], PH. 448 pp. Englisch. Nº de ref. del artículo: 9783034899567
Cantidad disponible: 2 disponibles
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - Print on Demand Titel. Neuware -This book gives a systematic treatment of the basic theory of analytic semigroups and abstract parabolic equations in general Banach spaces, and of how such a theory may be used in parabolic PDE's. It takes into account the developments of the theory during the last fifteen years, and it is focused on classical solutions, with continuous or Holder continuous derivatives. On one hand, working in spaces of continuous functions rather than in Lebesgue spaces seems to be appropriate in view of the number of parabolic problems arising in applied mathematics, where continuity has physical meaning; on the other hand it allows one to consider any type of nonlinearities (even of nonlocal type), even involving the highest order derivatives of the solution, avoiding the limitations on the growth of the nonlinear terms required by the LP approach. Moreover, the continuous space theory is, at present, sufficiently well established. For the Hilbert space approach we refer to J. L. LIONS - E. MAGENES [128], M. S. AGRANOVICH - M. l. VISHIK [14], and for the LP approach to V. A. SOLONNIKOV [184], P. GRISVARD [94], G. DI BLASIO [72], G. DORE - A. VENNI [76] and the subsequent papers [90], [169], [170]. Many books about abstract evolution equations and semigroups contain some chapters on analytic semigroups. See, e. g. , E. HILLE - R. S. PHILLIPS [100]' S. G. KREIN [114], K. YOSIDA [213], A. PAZY [166], H. TANABE [193], PH.Springer Basel AG in Springer Science + Business Media, Heidelberger Platz 3, 14197 Berlin 448 pp. Englisch. Nº de ref. del artículo: 9783034899567
Cantidad disponible: 1 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. pp. 450. Nº de ref. del artículo: 2648022669
Cantidad disponible: 4 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: New. Print on Demand pp. 450 49:B&W 6.14 x 9.21 in or 234 x 156 mm (Royal 8vo) Perfect Bound on White w/Gloss Lam. Nº de ref. del artículo: 44792658
Cantidad disponible: 4 disponibles
Librería: Biblios, Frankfurt am main, HESSE, Alemania
Condición: New. PRINT ON DEMAND pp. 450. Nº de ref. del artículo: 1848022663
Cantidad disponible: 4 disponibles
Librería: Revaluation Books, Exeter, Reino Unido
Paperback. Condición: Brand New. reprint edition. 424 pages. 9.25x6.10x1.01 inches. In Stock. Nº de ref. del artículo: x-3034899564
Cantidad disponible: 2 disponibles