Algorithmic Foundations of Differential Privacy

Dwork, Cynthia; Roth, Aaron

ISBN 10: 1601988184 ISBN 13: 9781601988188
Editorial: Now Publishers, 2014
Nuevos Encuadernación de tapa blanda

Librería: GreatBookPricesUK, Woodford Green, Reino Unido Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Vendedor de AbeBooks desde 28 de enero de 2020

Este artículo en concreto ya no está disponible.

Descripción

Descripción:

N° de ref. del artículo 21742741-n

Denunciar este artículo

Sinopsis:

The problem of privacy-preserving data analysis has a long history spanning multiple disciplines. As electronic data about individuals becomes increasingly detailed, and as technology enables ever more powerful collection and curation of these data, the need increases for a robust, meaningful, and mathematically rigorous definition of privacy, together with a computationally rich class of algorithms that satisfy this definition. Differential Privacy is such a definition. The Algorithmic Foundations of Differential Privacy starts out by motivating and discussing the meaning of differential privacy, and proceeds to explore the fundamental techniques for achieving differential privacy, and the application of these techniques in creative combinations, using the query-release problem as an ongoing example. A key point is that, by rethinking the computational goal, one can often obtain far better results than would be achieved by methodically replacing each step of a non-private computation with a differentially private implementation. Despite some powerful computational results, there are still fundamental limitations. Virtually all the algorithms discussed herein maintain differential privacy against adversaries of arbitrary computational power -- certain algorithms are computationally intensive, others are efficient. Computational complexity for the adversary and the algorithm are both discussed. The monograph then turns from fundamentals to applications other than query-release, discussing differentially private methods for mechanism design and machine learning. The vast majority of the literature on differentially private algorithms considers a single, static, database that is subject to many analyses. Differential privacy in other models, including distributed databases and computations on data streams, is discussed. The Algorithmic Foundations of Differential Privacy is meant as a thorough introduction to the problems and techniques of differential privacy, and is an invaluable reference for anyone with an interest in the topic.

Reseña del editor: The problem of privacy-preserving data analysis has a long history spanning multiple disciplines. As electronic data about individuals becomes increasingly detailed, and as technology enables ever more powerful collection and curation of these data, the need increases for a robust, meaningful, and mathematically rigorous definition of privacy, together with a computationally rich class of algorithms that satisfy this definition. Differential Privacy is such a definition. The Algorithmic Foundations of Differential Privacy starts out by motivating and discussing the meaning of differential privacy, and proceeds to explore the fundamental techniques for achieving differential privacy, and the application of these techniques in creative combinations, using the query-release problem as an ongoing example. A key point is that, by rethinking the computational goal, one can often obtain far better results than would be achieved by methodically replacing each step of a non-private computation with a differentially private implementation. Despite some powerful computational results, there are still fundamental limitations. Virtually all the algorithms discussed herein maintain differential privacy against adversaries of arbitrary computational power -- certain algorithms are computationally intensive, others are efficient. Computational complexity for the adversary and the algorithm are both discussed. The monograph then turns from fundamentals to applications other than query-release, discussing differentially private methods for mechanism design and machine learning. The vast majority of the literature on differentially private algorithms considers a single, static, database that is subject to many analyses. Differential privacy in other models, including distributed databases and computations on data streams, is discussed. The Algorithmic Foundations of Differential Privacy is meant as a thorough introduction to the problems and techniques of differential privacy, and is an invaluable reference for anyone with an interest in the topic.

"Sobre este título" puede pertenecer a otra edición de este libro.

Detalles bibliográficos

Título: Algorithmic Foundations of Differential ...
Editorial: Now Publishers
Año de publicación: 2014
Encuadernación: Encuadernación de tapa blanda
Condición: New

Los mejores resultados en AbeBooks

Imagen del vendedor

Cynthia Dwork; Aaron Roth
Publicado por Now Publishers, 2014
ISBN 10: 1601988184 ISBN 13: 9781601988188
Antiguo o usado Good

Librería: Westland Books, Wymondham, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Good. UK stocked, available immediately. Trade paperback, published by Now Publishing in 2014. A little wear to the covers and corners, but the text is unmarked throughout. A nice bright copy. Nº de ref. del artículo: sk10rew474

Contactar al vendedor

Comprar usado

EUR 53,60
Convertir moneda
Gastos de envío: EUR 10,35
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

Dwork, Cynthia; Roth, Aaron
Publicado por Now Publishers, 2014
ISBN 10: 1601988184 ISBN 13: 9781601988188
Nuevo Tapa blanda

Librería: Ria Christie Collections, Uxbridge, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. In. Nº de ref. del artículo: ria9781601988188_new

Contactar al vendedor

Comprar nuevo

EUR 85,63
Convertir moneda
Gastos de envío: EUR 5,19
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Cynthia Dwork
Publicado por Now Publishers, 2014
ISBN 10: 1601988184 ISBN 13: 9781601988188
Nuevo PAP
Impresión bajo demanda

Librería: PBShop.store US, Wood Dale, IL, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

PAP. Condición: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Nº de ref. del artículo: L0-9781601988188

Contactar al vendedor

Comprar nuevo

EUR 89,93
Convertir moneda
Gastos de envío: EUR 0,86
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

Dwork, Cynthia|Roth, Aaron
Publicado por Now Publishers Inc, 2014
ISBN 10: 1601988184 ISBN 13: 9781601988188
Nuevo Tapa blanda

Librería: moluna, Greven, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. KlappentextrnrnThe problem of privacy-preserving data analysis has a long history spanning multiple disciplines. As electronic data about individuals becomes increasingly detailed, and as technology enables ever more powerful collection and cur. Nº de ref. del artículo: 448142589

Contactar al vendedor

Comprar nuevo

EUR 94,61
Convertir moneda
Gastos de envío: EUR 19,49
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Cynthia Dwork
Publicado por now publishers Inc, 2014
ISBN 10: 1601988184 ISBN 13: 9781601988188
Nuevo Paperback / softback
Impresión bajo demanda

Librería: THE SAINT BOOKSTORE, Southport, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Paperback / softback. Condición: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 452. Nº de ref. del artículo: C9781601988188

Contactar al vendedor

Comprar nuevo

EUR 98,67
Convertir moneda
Gastos de envío: EUR 7,26
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

Cynthia Dwork, Aaron Roth
Publicado por now publishers Inc, US, 2014
ISBN 10: 1601988184 ISBN 13: 9781601988188
Nuevo Paperback

Librería: Rarewaves.com UK, London, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Paperback. Condición: New. The problem of privacy-preserving data analysis has a long history spanning multiple disciplines. As electronic data about individuals becomes increasingly detailed, and as technology enables ever more powerful collection and curation of these data, the need increases for a robust, meaningful, and mathematically rigorous definition of privacy, together with a computationally rich class of algorithms that satisfy this definition. Differential Privacy is such a definition.The Algorithmic Foundations of Differential Privacy starts out by motivating and discussing the meaning of differential privacy, and proceeds to explore the fundamental techniques for achieving differential privacy, and the application of these techniques in creative combinations, using the query-release problem as an ongoing example. A key point is that, by rethinking the computational goal, one can often obtain far better results than would be achieved by methodically replacing each step of a non-private computation with a differentially private implementation. Despite some powerful computational results, there are still fundamental limitations.Virtually all the algorithms discussed herein maintain differential privacy against adversaries of arbitrary computational power - certain algorithms are computationally intensive, others are efficient. Computational complexity for the adversary and the algorithm are both discussed. The monograph then turns from fundamentals to applications other than query-release, discussing differentially private methods for mechanism design and machine learning. The vast majority of the literature on differentially private algorithms considers a single, static, database that is subject to many analyses. Differential privacy in other models, including distributed databases and computations on data streams, is discussed.The Algorithmic Foundations of Differential Privacy is meant as a thorough introduction to the problems and techniques of differential privacy, and is an invaluable reference for anyone with an interest in the topic. Nº de ref. del artículo: LU-9781601988188

Contactar al vendedor

Comprar nuevo

EUR 113,37
Convertir moneda
Gastos de envío: EUR 2,31
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

Cynthia Dwork, Aaron Roth
Publicado por now publishers Inc, US, 2014
ISBN 10: 1601988184 ISBN 13: 9781601988188
Nuevo Paperback

Librería: Rarewaves USA, OSWEGO, IL, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Paperback. Condición: New. The problem of privacy-preserving data analysis has a long history spanning multiple disciplines. As electronic data about individuals becomes increasingly detailed, and as technology enables ever more powerful collection and curation of these data, the need increases for a robust, meaningful, and mathematically rigorous definition of privacy, together with a computationally rich class of algorithms that satisfy this definition. Differential Privacy is such a definition.The Algorithmic Foundations of Differential Privacy starts out by motivating and discussing the meaning of differential privacy, and proceeds to explore the fundamental techniques for achieving differential privacy, and the application of these techniques in creative combinations, using the query-release problem as an ongoing example. A key point is that, by rethinking the computational goal, one can often obtain far better results than would be achieved by methodically replacing each step of a non-private computation with a differentially private implementation. Despite some powerful computational results, there are still fundamental limitations.Virtually all the algorithms discussed herein maintain differential privacy against adversaries of arbitrary computational power - certain algorithms are computationally intensive, others are efficient. Computational complexity for the adversary and the algorithm are both discussed. The monograph then turns from fundamentals to applications other than query-release, discussing differentially private methods for mechanism design and machine learning. The vast majority of the literature on differentially private algorithms considers a single, static, database that is subject to many analyses. Differential privacy in other models, including distributed databases and computations on data streams, is discussed.The Algorithmic Foundations of Differential Privacy is meant as a thorough introduction to the problems and techniques of differential privacy, and is an invaluable reference for anyone with an interest in the topic. Nº de ref. del artículo: LU-9781601988188

Contactar al vendedor

Comprar nuevo

EUR 113,92
Convertir moneda
Gastos de envío: EUR 3,41
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

Cynthia Dwork
Publicado por Now Publishers Inc, 2014
ISBN 10: 1601988184 ISBN 13: 9781601988188
Nuevo Taschenbuch
Impresión bajo demanda

Librería: AHA-BUCH GmbH, Einbeck, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - The problem of privacy-preserving data analysis has a long history spanning multiple disciplines. As electronic data about individuals becomes increasingly detailed, and as technology enables ever more powerful collection and curation of these data, the need increases for a robust, meaningful, and mathematically rigorous definition of privacy, together with a computationally rich class of algorithms that satisfy this definition. Differential Privacy is such a definition.The Algorithmic Foundations of Differential Privacy starts out by motivating and discussing the meaning of differential privacy, and proceeds to explore the fundamental techniques for achieving differential privacy, and the application of these techniques in creative combinations, using the query-release problem as an ongoing example. A key point is that, by rethinking the computational goal, one can often obtain far better results than would be achieved by methodically replacing each step of a non-private computation with a differentially private implementation. Despite some powerful computational results, there are still fundamental limitations.Virtually all the algorithms discussed herein maintain differential privacy against adversaries of arbitrary computational power -- certain algorithms are computationally intensive, others are efficient. Computational complexity for the adversary and the algorithm are both discussed. The monograph then turns from fundamentals to applications other than query-release, discussing differentially private methods for mechanism design and machine learning. The vast majority of the literature on differentially private algorithms considers a single, static, database that is subject to many analyses. Differential privacy in other models, including distributed databases and computations on data streams, is discussed.The Algorithmic Foundations of Differential Privacy is meant as a thorough introduction to the problems and techniques of differential privacy, and is an invaluable reference for anyone with an interest in the topic. Nº de ref. del artículo: 9781601988188

Contactar al vendedor

Comprar nuevo

EUR 115,81
Convertir moneda
Gastos de envío: EUR 11,99
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen del vendedor

Cynthia Dwork, Aaron Roth
Publicado por now publishers Inc, US, 2014
ISBN 10: 1601988184 ISBN 13: 9781601988188
Nuevo Paperback

Librería: Rarewaves USA United, OSWEGO, IL, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Paperback. Condición: New. The problem of privacy-preserving data analysis has a long history spanning multiple disciplines. As electronic data about individuals becomes increasingly detailed, and as technology enables ever more powerful collection and curation of these data, the need increases for a robust, meaningful, and mathematically rigorous definition of privacy, together with a computationally rich class of algorithms that satisfy this definition. Differential Privacy is such a definition.The Algorithmic Foundations of Differential Privacy starts out by motivating and discussing the meaning of differential privacy, and proceeds to explore the fundamental techniques for achieving differential privacy, and the application of these techniques in creative combinations, using the query-release problem as an ongoing example. A key point is that, by rethinking the computational goal, one can often obtain far better results than would be achieved by methodically replacing each step of a non-private computation with a differentially private implementation. Despite some powerful computational results, there are still fundamental limitations.Virtually all the algorithms discussed herein maintain differential privacy against adversaries of arbitrary computational power - certain algorithms are computationally intensive, others are efficient. Computational complexity for the adversary and the algorithm are both discussed. The monograph then turns from fundamentals to applications other than query-release, discussing differentially private methods for mechanism design and machine learning. The vast majority of the literature on differentially private algorithms considers a single, static, database that is subject to many analyses. Differential privacy in other models, including distributed databases and computations on data streams, is discussed.The Algorithmic Foundations of Differential Privacy is meant as a thorough introduction to the problems and techniques of differential privacy, and is an invaluable reference for anyone with an interest in the topic. Nº de ref. del artículo: LU-9781601988188

Contactar al vendedor

Comprar nuevo

EUR 116,48
Convertir moneda
Gastos de envío: EUR 3,41
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

Cynthia Dwork, Aaron Roth
Publicado por now publishers Inc, US, 2014
ISBN 10: 1601988184 ISBN 13: 9781601988188
Nuevo Paperback

Librería: Rarewaves.com USA, London, LONDO, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Paperback. Condición: New. The problem of privacy-preserving data analysis has a long history spanning multiple disciplines. As electronic data about individuals becomes increasingly detailed, and as technology enables ever more powerful collection and curation of these data, the need increases for a robust, meaningful, and mathematically rigorous definition of privacy, together with a computationally rich class of algorithms that satisfy this definition. Differential Privacy is such a definition.The Algorithmic Foundations of Differential Privacy starts out by motivating and discussing the meaning of differential privacy, and proceeds to explore the fundamental techniques for achieving differential privacy, and the application of these techniques in creative combinations, using the query-release problem as an ongoing example. A key point is that, by rethinking the computational goal, one can often obtain far better results than would be achieved by methodically replacing each step of a non-private computation with a differentially private implementation. Despite some powerful computational results, there are still fundamental limitations.Virtually all the algorithms discussed herein maintain differential privacy against adversaries of arbitrary computational power - certain algorithms are computationally intensive, others are efficient. Computational complexity for the adversary and the algorithm are both discussed. The monograph then turns from fundamentals to applications other than query-release, discussing differentially private methods for mechanism design and machine learning. The vast majority of the literature on differentially private algorithms considers a single, static, database that is subject to many analyses. Differential privacy in other models, including distributed databases and computations on data streams, is discussed.The Algorithmic Foundations of Differential Privacy is meant as a thorough introduction to the problems and techniques of differential privacy, and is an invaluable reference for anyone with an interest in the topic. Nº de ref. del artículo: LU-9781601988188

Contactar al vendedor

Comprar nuevo

EUR 121,10
Convertir moneda
Gastos de envío: EUR 2,31
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Existen otras 4 copia(s) de este libro

Ver todos los resultados de su búsqueda