Machine Learning in Cardiology: A Practical R-Based Approach demystifies how artificial intelligence can revolutionize modern heart care. Written by cardiologist and data scientist Dr. Matthew Segar, this hands-on guide takes you step by step through essential R-based workflows—from data wrangling and visualization to advanced modeling techniques and real-world clinical applications.
You’ll learn how to harness supervised and unsupervised learning, master feature engineering for complex cardiac data, and build powerful predictive tools for risk stratification. Dive into specialized topics like ECG signal analysis, survival modeling, and genomic data integration, then see how to implement fairness and bias mitigation strategies to ensure equitable patient outcomes. With clear, annotated R code examples and in-depth discussions about ethics, regulatory landscapes, and reproducible research, this book empowers you to develop robust, trustworthy machine learning systems.
Whether you’re a cardiologist, researcher, or data scientist, Machine Learning in Cardiology provides the technical know-how and clinical insights to elevate your practice—and ultimately improve patient care.
"Sinopsis" puede pertenecer a otra edición de este libro.
EUR 2,32 gastos de envío desde Reino Unido a España
Destinos, gastos y plazos de envíoLibrería: Rarewaves.com UK, London, Reino Unido
Paperback. Condición: New. Nº de ref. del artículo: LU-9798992730500
Cantidad disponible: Más de 20 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9798992730500_new
Cantidad disponible: Más de 20 disponibles
Librería: Rarewaves.com USA, London, LONDO, Reino Unido
Paperback. Condición: New. Nº de ref. del artículo: LU-9798992730500
Cantidad disponible: Más de 20 disponibles
Librería: California Books, Miami, FL, Estados Unidos de America
Condición: New. Nº de ref. del artículo: I-9798992730500
Cantidad disponible: Más de 20 disponibles
Librería: CitiRetail, Stevenage, Reino Unido
Paperback. Condición: new. Paperback. Machine Learning in Cardiology: A Practical R-Based Approach demystifies how artificial intelligence can revolutionize modern heart care. Written by cardiologist and data scientist Dr. Matthew Segar, this hands-on guide takes you step by step through essential R-based workflows-from data wrangling and visualization to advanced modeling techniques and real-world clinical applications.You'll learn how to harness supervised and unsupervised learning, master feature engineering for complex cardiac data, and build powerful predictive tools for risk stratification. Dive into specialized topics like ECG signal analysis, survival modeling, and genomic data integration, then see how to implement fairness and bias mitigation strategies to ensure equitable patient outcomes. With clear, annotated R code examples and in-depth discussions about ethics, regulatory landscapes, and reproducible research, this book empowers you to develop robust, trustworthy machine learning systems.Whether you're a cardiologist, researcher, or data scientist, Machine Learning in Cardiology provides the technical know-how and clinical insights to elevate your practice-and ultimately improve patient care. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. Nº de ref. del artículo: 9798992730500
Cantidad disponible: 1 disponibles
Librería: Grand Eagle Retail, Mason, OH, Estados Unidos de America
Paperback. Condición: new. Paperback. Machine Learning in Cardiology: A Practical R-Based Approach demystifies how artificial intelligence can revolutionize modern heart care. Written by cardiologist and data scientist Dr. Matthew Segar, this hands-on guide takes you step by step through essential R-based workflows-from data wrangling and visualization to advanced modeling techniques and real-world clinical applications.You'll learn how to harness supervised and unsupervised learning, master feature engineering for complex cardiac data, and build powerful predictive tools for risk stratification. Dive into specialized topics like ECG signal analysis, survival modeling, and genomic data integration, then see how to implement fairness and bias mitigation strategies to ensure equitable patient outcomes. With clear, annotated R code examples and in-depth discussions about ethics, regulatory landscapes, and reproducible research, this book empowers you to develop robust, trustworthy machine learning systems.Whether you're a cardiologist, researcher, or data scientist, Machine Learning in Cardiology provides the technical know-how and clinical insights to elevate your practice-and ultimately improve patient care. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Nº de ref. del artículo: 9798992730500
Cantidad disponible: 1 disponibles