Mastering AI, machine learning, and data science often means piecing together concepts scattered across countless resources, statistics, and visualizations to foundational models and large language models. This book, the result of eight years of effort, brings it all together in one accessible, engaging package. It clarifies artificial intelligence and data science, blending core mathematical principles with a clear, reader-friendly approach.
Unlike traditional textbooks that lean heavily on equations and mathematical formalization, the author starts with minimal prerequisites, layering deeper math as the reader progresses. Each concept, algorithm, or model is unpacked through clear, hands-on examples that build the reader's skills step by step. It strikes a balance between theoretical foundations and practical application, serving as both an academic reference and a practical guide.
Furthermore, the book uses humor, casual language, and comics to make the challenging concepts and topics relatable and fun. Any resemblance between the jokes and real life is pure coincidence, and no offense is intended.
Table of Contents
"Sinopsis" puede pertenecer a otra edición de este libro.
Reza Rawassizadeh is a professor of Computer Science at Boston University with over a decade of experience in academic research and industrial projects. His scholarly contributions span digital health, ubiquitous technologies, resource-efficient computing, and on-device AI/machine learning. His research emphasizes developing efficient machine learning and AI models tailored for affordable hardware platforms, advancing the democratization of AI.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 17,14 gastos de envío desde Estados Unidos de America a España
Destinos, gastos y plazos de envíoEUR 17,14 gastos de envío desde Estados Unidos de America a España
Destinos, gastos y plazos de envíoLibrería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 50206919
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 50206919-n
Cantidad disponible: Más de 20 disponibles
Librería: California Books, Miami, FL, Estados Unidos de America
Condición: New. Nº de ref. del artículo: I-9798992162110
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 50206919
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
Condición: New. Nº de ref. del artículo: 50206919-n
Cantidad disponible: Más de 20 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9798992162110_new
Cantidad disponible: Más de 20 disponibles
Librería: AussieBookSeller, Truganina, VIC, Australia
Paperback. Condición: new. Paperback. Mastering AI, machine learning, and data science often means piecing together concepts scattered across countless resources, statistics, and visualizations to foundational models and large language models. This book, the result of eight years of effort, brings it all together in one accessible, engaging package. It clarifies artificial intelligence and data science, blending core mathematical principles with a clear, reader-friendly approach. Unlike traditional textbooks that lean heavily on equations and mathematical formalization, the author starts with minimal prerequisites, layering deeper math as the reader progresses. Each concept, algorithm, or model is unpacked through clear, hands-on examples that build the reader's skills step by step. It strikes a balance between theoretical foundations and practical application, serving as both an academic reference and a practical guide.Furthermore, the book uses humor, casual language, and comics to make the challenging concepts and topics relatable and fun. Any resemblance between the jokes and real life is pure coincidence, and no offense is intended.Table of ContentsPart I: Introduction & Preliminary RequirementsChapter 1: Basic ConceptsChapter 2: VisualizationChapter 3: Probability and StatisticsPart II: Unsupervised LearningChapter 4: ClusteringChapter 5: Frequent Itemset, Sequence Mining and Information RetrievalPart III: Data EngineeringChapter 6: Feature EngineeringChapter 7: Dimensionality Reduction and Data DecompositionPart IV: Supervised LearningChapter 8: Regression AnalysisChapter 9: ClassificationPart V: Neural NetworkChapter 10: Neural Networks and Deep LearningChapter 11: Self-Supervised Deep LearningChapter 12: Deep Learning Models and Applications (Text, Vision, and Audio)Part VI: Reinforcement LearningChapter 13: Reinforcement LearningPart VII: Other Algorithms and ConceptsChapter 14: Making Lighter Neural Network and Machine Learning ModelsChapter 15: Graph Mining AlgorithmsChapter 16: Concepts and Challenges of Working with Data Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability. Nº de ref. del artículo: 9798992162110
Cantidad disponible: 1 disponibles
Librería: CitiRetail, Stevenage, Reino Unido
Paperback. Condición: new. Paperback. Mastering AI, machine learning, and data science often means piecing together concepts scattered across countless resources, statistics, and visualizations to foundational models and large language models. This book, the result of eight years of effort, brings it all together in one accessible, engaging package. It clarifies artificial intelligence and data science, blending core mathematical principles with a clear, reader-friendly approach. Unlike traditional textbooks that lean heavily on equations and mathematical formalization, the author starts with minimal prerequisites, layering deeper math as the reader progresses. Each concept, algorithm, or model is unpacked through clear, hands-on examples that build the reader's skills step by step. It strikes a balance between theoretical foundations and practical application, serving as both an academic reference and a practical guide.Furthermore, the book uses humor, casual language, and comics to make the challenging concepts and topics relatable and fun. Any resemblance between the jokes and real life is pure coincidence, and no offense is intended.Table of ContentsPart I: Introduction & Preliminary RequirementsChapter 1: Basic ConceptsChapter 2: VisualizationChapter 3: Probability and StatisticsPart II: Unsupervised LearningChapter 4: ClusteringChapter 5: Frequent Itemset, Sequence Mining and Information RetrievalPart III: Data EngineeringChapter 6: Feature EngineeringChapter 7: Dimensionality Reduction and Data DecompositionPart IV: Supervised LearningChapter 8: Regression AnalysisChapter 9: ClassificationPart V: Neural NetworkChapter 10: Neural Networks and Deep LearningChapter 11: Self-Supervised Deep LearningChapter 12: Deep Learning Models and Applications (Text, Vision, and Audio)Part VI: Reinforcement LearningChapter 13: Reinforcement LearningPart VII: Other Algorithms and ConceptsChapter 14: Making Lighter Neural Network and Machine Learning ModelsChapter 15: Graph Mining AlgorithmsChapter 16: Concepts and Challenges of Working with Data Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. Nº de ref. del artículo: 9798992162110
Cantidad disponible: 1 disponibles
Librería: Grand Eagle Retail, Mason, OH, Estados Unidos de America
Paperback. Condición: new. Paperback. Mastering AI, machine learning, and data science often means piecing together concepts scattered across countless resources, statistics, and visualizations to foundational models and large language models. This book, the result of eight years of effort, brings it all together in one accessible, engaging package. It clarifies artificial intelligence and data science, blending core mathematical principles with a clear, reader-friendly approach. Unlike traditional textbooks that lean heavily on equations and mathematical formalization, the author starts with minimal prerequisites, layering deeper math as the reader progresses. Each concept, algorithm, or model is unpacked through clear, hands-on examples that build the reader's skills step by step. It strikes a balance between theoretical foundations and practical application, serving as both an academic reference and a practical guide.Furthermore, the book uses humor, casual language, and comics to make the challenging concepts and topics relatable and fun. Any resemblance between the jokes and real life is pure coincidence, and no offense is intended.Table of ContentsPart I: Introduction & Preliminary RequirementsChapter 1: Basic ConceptsChapter 2: VisualizationChapter 3: Probability and StatisticsPart II: Unsupervised LearningChapter 4: ClusteringChapter 5: Frequent Itemset, Sequence Mining and Information RetrievalPart III: Data EngineeringChapter 6: Feature EngineeringChapter 7: Dimensionality Reduction and Data DecompositionPart IV: Supervised LearningChapter 8: Regression AnalysisChapter 9: ClassificationPart V: Neural NetworkChapter 10: Neural Networks and Deep LearningChapter 11: Self-Supervised Deep LearningChapter 12: Deep Learning Models and Applications (Text, Vision, and Audio)Part VI: Reinforcement LearningChapter 13: Reinforcement LearningPart VII: Other Algorithms and ConceptsChapter 14: Making Lighter Neural Network and Machine Learning ModelsChapter 15: Graph Mining AlgorithmsChapter 16: Concepts and Challenges of Working with Data Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Nº de ref. del artículo: 9798992162110
Cantidad disponible: 1 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Taschenbuch. Condición: Neu. Neuware - Mastering AI, machine learning, and data science often means piecing together concepts scattered across countless resources, statistics, and visualizations to foundational models and large language models. This book, the result of eight years of effort, brings it all together in one accessible, engaging package. It clarifies artificial intelligence and data science, blending core mathematical principles with a clear, reader-friendly approach. Nº de ref. del artículo: 9798992162110
Cantidad disponible: 2 disponibles