Learn the Julia programming language as quickly as possible. This book is a must-have reference guide that presents the essential Julia syntax in a well-organized format, updated with the latest features of Julia’s APIs, libraries, and packages.
This book provides an introduction that reveals basic Julia structures and syntax; discusses data types, control flow, functions, input/output, exceptions, metaprogramming, performance, and more. Additionally, you'll learn to interface Julia with other programming languages such as R for statistics or Python. At a more applied level, you will learn how to use Julia packages for data analysis, numerical optimization, symbolic computation, and machine learning, and how to present your results in dynamic documents.
The Second Edition delves deeper into modules, environments, and parallelism in Julia. It covers random numbers, reproducibility in stochastic computations, and adds a section on probabilistic analysis. Finally, it provides forward-thinking introductions to AI and machine learning workflows using BetaML, including regression, classification, clustering, and more, with practical exercises and solutions for self-learners.
What You Will Learn
Who This Book Is For
Experienced programmers who are new to Julia, as well as data scientists who want to improve their analysis or try out machine learning algorithms with Julia.
"Sinopsis" puede pertenecer a otra edición de este libro.
Antonello Lobianco, PhD is a research engineer employed by a French Grande É cole (polytechnic university). He works on the biophysical and economic modelling of the forest sector and is responsible for the lab models portfolio. He does programming in C++, Perl, PHP, Visual Basic, Python, and Julia. He teaches environmental and forest economics at undergraduate and graduate levels and modelling at PhD level. For a few years, he has followed the development of Julia as it fits his modelling needs. He is the author of a few Julia packages, particularly on data analysis and machine learning (search sylvaticus on GitHub).
Learn the Julia programming language as quickly as possible. This book is a must-have reference guide that presents the essential Julia syntax in a well-organized format, updated with the latest features of Julia's APIs, libraries, and packages.
This book provides an introduction that reveals basic Julia structures and syntax; discusses data types, control flow, functions, input/output, exceptions, metaprogramming, performance, and more. Additionally, you'll learn to interface Julia with other programming languages such as R for statistics or Python. At a more applied level, you will learn how to use Julia packages for data analysis, numerical optimization, symbolic computation, and machine learning, and how to present your results in dynamic documents.
The Second Edition delves deeper into modules, environments, and parallelism in Julia. It covers random numbers, reproducibility in stochastic computations, and adds a section on probabilistic analysis. Finally, it provides forward-thinking introductions to AI and machine learning workflows using BetaML, including regression, classification, clustering, and more, with practical exercises and solutions for self-learners.
What You Will Learn
Who This Book Is For
Experienced programmers who are new to Julia, as well as data scientists who want to improve their analysis or try out machine learning algorithms with Julia.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 16,99 gastos de envío desde Estados Unidos de America a España
Destinos, gastos y plazos de envíoEUR 6,80 gastos de envío desde Estados Unidos de America a España
Destinos, gastos y plazos de envíoLibrería: California Books, Miami, FL, Estados Unidos de America
Condición: New. Nº de ref. del artículo: I-9798868809644
Cantidad disponible: Más de 20 disponibles
Librería: Rarewaves USA, OSWEGO, IL, Estados Unidos de America
Paperback. Condición: New. Second Edition. Learn the Julia programming language as quickly as possible. This book is a must-have reference guide that presents the essential Julia syntax in a well-organized format, updated with the latest features of Julia's APIs, libraries, and packages.This book provides an introduction that reveals basic Julia structures and syntax; discusses data types, control flow, functions, input/output, exceptions, metaprogramming, performance, and more. Additionally, you'll learn to interface Julia with other programming languages such as R for statistics or Python. At a more applied level, you will learn how to use Julia packages for data analysis, numerical optimization, symbolic computation, and machine learning, and how to present your results in dynamic documents.The Second Edition delves deeper into modules, environments, and parallelism in Julia. It covers random numbers, reproducibility in stochastic computations, and adds a section on probabilistic analysis. Finally, it provides forward-thinking introductions to AI and machine learning workflows using BetaML, including regression, classification, clustering, and more, with practical exercises and solutions for self-learners.What You Will Learn Work with Julia types and the different containers for rapid developmentUse vectorized, classical loop-based code, logical operators, and blocksExplore Julia functions: arguments, return values, polymorphism, parameters, anonymous functions, and broadcastsBuild custom structures in JuliaUse C/C++, Python or R libraries in Julia and embed Julia in other code.Optimize performance with GPU programming, profiling and more.Manage, prepare, analyse and visualise your data with DataFrames and PlotsImplement complete ML workflows with BetaML, from data coding to model evaluation, and more.Who This Book Is ForExperienced programmers who are new to Julia, as well as data scientists who want to improve their analysis or try out machine learning algorithms with Julia. Nº de ref. del artículo: LU-9798868809644
Cantidad disponible: Más de 20 disponibles
Librería: Rarewaves USA United, OSWEGO, IL, Estados Unidos de America
Paperback. Condición: New. Second Edition. Learn the Julia programming language as quickly as possible. This book is a must-have reference guide that presents the essential Julia syntax in a well-organized format, updated with the latest features of Julia's APIs, libraries, and packages.This book provides an introduction that reveals basic Julia structures and syntax; discusses data types, control flow, functions, input/output, exceptions, metaprogramming, performance, and more. Additionally, you'll learn to interface Julia with other programming languages such as R for statistics or Python. At a more applied level, you will learn how to use Julia packages for data analysis, numerical optimization, symbolic computation, and machine learning, and how to present your results in dynamic documents.The Second Edition delves deeper into modules, environments, and parallelism in Julia. It covers random numbers, reproducibility in stochastic computations, and adds a section on probabilistic analysis. Finally, it provides forward-thinking introductions to AI and machine learning workflows using BetaML, including regression, classification, clustering, and more, with practical exercises and solutions for self-learners.What You Will Learn Work with Julia types and the different containers for rapid developmentUse vectorized, classical loop-based code, logical operators, and blocksExplore Julia functions: arguments, return values, polymorphism, parameters, anonymous functions, and broadcastsBuild custom structures in JuliaUse C/C++, Python or R libraries in Julia and embed Julia in other code.Optimize performance with GPU programming, profiling and more.Manage, prepare, analyse and visualise your data with DataFrames and PlotsImplement complete ML workflows with BetaML, from data coding to model evaluation, and more.Who This Book Is ForExperienced programmers who are new to Julia, as well as data scientists who want to improve their analysis or try out machine learning algorithms with Julia. Nº de ref. del artículo: LU-9798868809644
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 48401929-n
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 48401929
Cantidad disponible: Más de 20 disponibles
Librería: Rarewaves.com UK, London, Reino Unido
Paperback. Condición: New. Second Edition. Learn the Julia programming language as quickly as possible. This book is a must-have reference guide that presents the essential Julia syntax in a well-organized format, updated with the latest features of Julia's APIs, libraries, and packages.This book provides an introduction that reveals basic Julia structures and syntax; discusses data types, control flow, functions, input/output, exceptions, metaprogramming, performance, and more. Additionally, you'll learn to interface Julia with other programming languages such as R for statistics or Python. At a more applied level, you will learn how to use Julia packages for data analysis, numerical optimization, symbolic computation, and machine learning, and how to present your results in dynamic documents.The Second Edition delves deeper into modules, environments, and parallelism in Julia. It covers random numbers, reproducibility in stochastic computations, and adds a section on probabilistic analysis. Finally, it provides forward-thinking introductions to AI and machine learning workflows using BetaML, including regression, classification, clustering, and more, with practical exercises and solutions for self-learners.What You Will Learn Work with Julia types and the different containers for rapid developmentUse vectorized, classical loop-based code, logical operators, and blocksExplore Julia functions: arguments, return values, polymorphism, parameters, anonymous functions, and broadcastsBuild custom structures in JuliaUse C/C++, Python or R libraries in Julia and embed Julia in other code.Optimize performance with GPU programming, profiling and more.Manage, prepare, analyse and visualise your data with DataFrames and PlotsImplement complete ML workflows with BetaML, from data coding to model evaluation, and more.Who This Book Is ForExperienced programmers who are new to Julia, as well as data scientists who want to improve their analysis or try out machine learning algorithms with Julia. Nº de ref. del artículo: LU-9798868809644
Cantidad disponible: Más de 20 disponibles
Librería: Best Price, Torrance, CA, Estados Unidos de America
Condición: New. SUPER FAST SHIPPING. Nº de ref. del artículo: 9798868809644
Cantidad disponible: 1 disponibles
Librería: Rarewaves.com USA, London, LONDO, Reino Unido
Paperback. Condición: New. Second Edition. Learn the Julia programming language as quickly as possible. This book is a must-have reference guide that presents the essential Julia syntax in a well-organized format, updated with the latest features of Julia's APIs, libraries, and packages.This book provides an introduction that reveals basic Julia structures and syntax; discusses data types, control flow, functions, input/output, exceptions, metaprogramming, performance, and more. Additionally, you'll learn to interface Julia with other programming languages such as R for statistics or Python. At a more applied level, you will learn how to use Julia packages for data analysis, numerical optimization, symbolic computation, and machine learning, and how to present your results in dynamic documents.The Second Edition delves deeper into modules, environments, and parallelism in Julia. It covers random numbers, reproducibility in stochastic computations, and adds a section on probabilistic analysis. Finally, it provides forward-thinking introductions to AI and machine learning workflows using BetaML, including regression, classification, clustering, and more, with practical exercises and solutions for self-learners.What You Will Learn Work with Julia types and the different containers for rapid developmentUse vectorized, classical loop-based code, logical operators, and blocksExplore Julia functions: arguments, return values, polymorphism, parameters, anonymous functions, and broadcastsBuild custom structures in JuliaUse C/C++, Python or R libraries in Julia and embed Julia in other code.Optimize performance with GPU programming, profiling and more.Manage, prepare, analyse and visualise your data with DataFrames and PlotsImplement complete ML workflows with BetaML, from data coding to model evaluation, and more.Who This Book Is ForExperienced programmers who are new to Julia, as well as data scientists who want to improve their analysis or try out machine learning algorithms with Julia. Nº de ref. del artículo: LU-9798868809644
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 48401929
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
Condición: New. Nº de ref. del artículo: 48401929-n
Cantidad disponible: Más de 20 disponibles