A deep dive into the theory and mathematics behind neural networks, beyond typical AI applications.
Area of focus:
- Grasp complex statistical learning theories and their application in neural frameworks.
- Explore universal approximation theorems to understand network capabilities.
- Delve into the trade-offs between neural network depth and width.
- Analyze the optimization landscapes to enhance training performance.
- Study advanced gradient optimization methods for efficient training.
- Investigate generalization theories applicable to deep learning models.
- Examine regularization techniques with a strong theoretical foundation.
- Apply the Information Bottleneck principle for better learning insights.
- Understand the role of stochasticity and its impact on neural networks.
- Master Bayesian techniques for uncertainty quantification and posterior inference.
- Model neural networks using dynamical systems theory for stability analysis.
- Learn representation learning and the geometry of feature spaces for transfer learning.
- Explore theoretical insights into Convolutional Neural Networks (CNNs).
- Analyze Recurrent Neural Networks (RNNs) for sequence data and temporal predictions.
- Discover the theoretical underpinnings of attention mechanisms and transformers.
- Study generative models like VAEs and GANs for creating new data.
- Dive into energy-based models and Boltzmann machines for unsupervised learning.
- Understand neural tangent kernel frameworks and infinite width networks.
- Examine symmetries and invariances in neural network design.
- Explore optimization methodologies beyond traditional gradient descent.
- Enhance model robustness by learning about adversarial examples.
- Address challenges in continual learning and overcome catastrophic forgetting.
- Interpret sparse coding theories and design efficient, interpretable models.
- Link neural networks with differential equations for theoretical advancements.
- Analyze graph neural networks for relational learning on complex data structures.
- Grasp the principles of meta-learning for quick adaptation and hypothesis search.
- Delve into quantum neural networks for pushing the boundaries of computation.
- Investigate neuromorphic computing models such as spiking neural networks.
- Decode neural networks' decisions through explainability and interpretability methods.
- Reflect on the ethical and philosophical implications of advanced AI technologies.
- Discuss the theoretical limitations and unresolved challenges of neural networks.
- Learn how topological data analysis informs neural network decision boundaries.
"Sinopsis" puede pertenecer a otra edición de este libro.
EUR 17,07 gastos de envío desde Estados Unidos de America a España
Destinos, gastos y plazos de envíoEUR 5,21 gastos de envío desde Reino Unido a España
Destinos, gastos y plazos de envíoLibrería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9798339808039_new
Cantidad disponible: Más de 20 disponibles
Librería: California Books, Miami, FL, Estados Unidos de America
Condición: New. Print on Demand. Nº de ref. del artículo: I-9798339808039
Cantidad disponible: Más de 20 disponibles
Librería: Rarewaves USA, OSWEGO, IL, Estados Unidos de America
Paperback. Condición: New. Nº de ref. del artículo: LU-9798339808039
Cantidad disponible: Más de 20 disponibles
Librería: Rarewaves.com UK, London, Reino Unido
Paperback. Condición: New. Nº de ref. del artículo: LU-9798339808039
Cantidad disponible: Más de 20 disponibles
Librería: Rarewaves USA United, OSWEGO, IL, Estados Unidos de America
Paperback. Condición: New. Nº de ref. del artículo: LU-9798339808039
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 48339729-n
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 48339729
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
Condición: New. Nº de ref. del artículo: 48339729-n
Cantidad disponible: Más de 20 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Taschenbuch. Condición: Neu. Neuware - A deep dive into the theory and mathematics behind neural networks, beyond typical AI applications. Nº de ref. del artículo: 9798339808039
Cantidad disponible: 2 disponibles
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 48339729
Cantidad disponible: Más de 20 disponibles