LEARN MLflow — Manage Machine Learning Pipelines and Models Efficiently
This book offers a technical and practical approach for professionals looking to master MLflow — one of the leading platforms for managing the machine learning model lifecycle. The content covers everything from environment setup to production deployment, with a strong focus on reproducibility, versioning, tracking, and technical governance. Each chapter presents a key MLflow component (Tracking, Projects, Models, Model Registry) and demonstrates how to apply it in real-world scenarios, with clear examples, progressive structure, and established best practices.
More than an introduction, this is a professional operations guide. Throughout the chapters, you will learn how to build auditable pipelines, automate CI/CD integrations, manage model versions in production, analyze metrics, and plan for scalability. Integrations with AutoML, Spark, cloud environments, security validation, access control, and post-deployment monitoring are also explored.
The content was developed based on the TECHWRITE 2.2 protocol, ensuring immediate applicability in corporate and technical environments. Ideal for data engineers, data scientists, MLOps architects, and technical leaders seeking to raise the standard of model delivery in real-world environments.
MLflow, MLOps, model management, experiment tracking, model deployment.
"Sinopsis" puede pertenecer a otra edición de este libro.
GRATIS gastos de envío en Estados Unidos de America
Destinos, gastos y plazos de envíoLibrería: California Books, Miami, FL, Estados Unidos de America
Condición: New. Print on Demand. Nº de ref. del artículo: I-9798319465542
Cantidad disponible: Más de 20 disponibles
Librería: Best Price, Torrance, CA, Estados Unidos de America
Condición: New. SUPER FAST SHIPPING. Nº de ref. del artículo: 9798319465542
Cantidad disponible: 2 disponibles
Librería: Grand Eagle Retail, Mason, OH, Estados Unidos de America
Paperback. Condición: new. Paperback. LEARN MLflow - Manage Machine Learning Pipelines and Models EfficientlyThis book offers a technical and practical approach for professionals looking to master MLflow - one of the leading platforms for managing the machine learning model lifecycle. The content covers everything from environment setup to production deployment, with a strong focus on reproducibility, versioning, tracking, and technical governance. Each chapter presents a key MLflow component (Tracking, Projects, Models, Model Registry) and demonstrates how to apply it in real-world scenarios, with clear examples, progressive structure, and established best practices.More than an introduction, this is a professional operations guide. Throughout the chapters, you will learn how to build auditable pipelines, automate CI/CD integrations, manage model versions in production, analyze metrics, and plan for scalability. Integrations with AutoML, Spark, cloud environments, security validation, access control, and post-deployment monitoring are also explored.The content was developed based on the TECHWRITE 2.2 protocol, ensuring immediate applicability in corporate and technical environments. Ideal for data engineers, data scientists, MLOps architects, and technical leaders seeking to raise the standard of model delivery in real-world environments.MLflow, MLOps, model management, experiment tracking, model deployment. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Nº de ref. del artículo: 9798319465542
Cantidad disponible: 1 disponibles
Librería: Rarewaves.com USA, London, LONDO, Reino Unido
Paperback. Condición: New. Nº de ref. del artículo: LU-9798319465542
Cantidad disponible: Más de 20 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9798319465542_new
Cantidad disponible: Más de 20 disponibles
Librería: CitiRetail, Stevenage, Reino Unido
Paperback. Condición: new. Paperback. LEARN MLflow - Manage Machine Learning Pipelines and Models EfficientlyThis book offers a technical and practical approach for professionals looking to master MLflow - one of the leading platforms for managing the machine learning model lifecycle. The content covers everything from environment setup to production deployment, with a strong focus on reproducibility, versioning, tracking, and technical governance. Each chapter presents a key MLflow component (Tracking, Projects, Models, Model Registry) and demonstrates how to apply it in real-world scenarios, with clear examples, progressive structure, and established best practices.More than an introduction, this is a professional operations guide. Throughout the chapters, you will learn how to build auditable pipelines, automate CI/CD integrations, manage model versions in production, analyze metrics, and plan for scalability. Integrations with AutoML, Spark, cloud environments, security validation, access control, and post-deployment monitoring are also explored.The content was developed based on the TECHWRITE 2.2 protocol, ensuring immediate applicability in corporate and technical environments. Ideal for data engineers, data scientists, MLOps architects, and technical leaders seeking to raise the standard of model delivery in real-world environments.MLflow, MLOps, model management, experiment tracking, model deployment. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. Nº de ref. del artículo: 9798319465542
Cantidad disponible: 1 disponibles
Librería: Rarewaves.com UK, London, Reino Unido
Paperback. Condición: New. Nº de ref. del artículo: LU-9798319465542
Cantidad disponible: Más de 20 disponibles