Ever wondered how machines learn to make decisions: not by rules, but by trial and error?
Learning to Learn: Reinforcement Learning Explained for Humans is your doorway into one of the most exciting areas of Artificial Intelligence. Written with stories, analogies, and real Python code, this book transforms complex equations into ideas you’ll never forget.
Inside, you’ll discover:
The core building blocks of Reinforcement Learning: agents, states, actions, rewards, and policies.
Why trial-and-error learning powers robots, self-driving cars, recommender systems, and even healthcare AI.
Intuitive analogies: from curious cats to game-playing algorithms.
Step-by-step Python examples you can run and modify yourself.
“Satyam’s Explanation” sections at the end of each chapter that strip away jargon and give you the heart of the idea in plain language.
Whether you’re a student, developer, researcher, or a curious learner, this book is designed to help you not just understand RL, but feel how it works. Each chapter includes quizzes, reflective exercises, and code experiments so you can learn actively.
If you’ve been intimidated by dense math and Bellman equations, this book is the friendly guide you’ve been looking for.
Learn to think like an agent. Learn to learn.
"Sinopsis" puede pertenecer a otra edición de este libro.
EUR 16,90 gastos de envío desde Estados Unidos de America a España
Destinos, gastos y plazos de envíoEUR 16,90 gastos de envío desde Estados Unidos de America a España
Destinos, gastos y plazos de envíoLibrería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 50947799-n
Cantidad disponible: Más de 20 disponibles
Librería: Best Price, Torrance, CA, Estados Unidos de America
Condición: New. SUPER FAST SHIPPING. Nº de ref. del artículo: 9798298399968
Cantidad disponible: 1 disponibles
Librería: California Books, Miami, FL, Estados Unidos de America
Condición: New. Print on Demand. Nº de ref. del artículo: I-9798298399968
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
Condición: New. Nº de ref. del artículo: 50947799-n
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 50947799
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 50947799
Cantidad disponible: Más de 20 disponibles
Librería: CitiRetail, Stevenage, Reino Unido
Paperback. Condición: new. Paperback. Ever wondered how machines learn to make decisions: not by rules, but by trial and error?Learning to Learn: Reinforcement Learning Explained for Humans is your doorway into one of the most exciting areas of Artificial Intelligence. Written with stories, analogies, and real Python code, this book transforms complex equations into ideas you'll never forget.Inside, you'll discover: The core building blocks of Reinforcement Learning: agents, states, actions, rewards, and policies.Why trial-and-error learning powers robots, self-driving cars, recommender systems, and even healthcare AI.Intuitive analogies: from curious cats to game-playing algorithms.Step-by-step Python examples you can run and modify yourself."Satyam's Explanation" sections at the end of each chapter that strip away jargon and give you the heart of the idea in plain language.Whether you're a student, developer, researcher, or a curious learner, this book is designed to help you not just understand RL, but feel how it works. Each chapter includes quizzes, reflective exercises, and code experiments so you can learn actively.If you've been intimidated by dense math and Bellman equations, this book is the friendly guide you've been looking for.Learn to think like an agent. Learn to learn. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. Nº de ref. del artículo: 9798298399968
Cantidad disponible: 1 disponibles