Artículos relacionados a LEARN APACHE SPARK: Build Scalable Pipelines with PySpark...

LEARN APACHE SPARK: Build Scalable Pipelines with PySpark and Optimization: 4 (Data Extreme Eng) - Tapa blanda

 
9798289704603: LEARN APACHE SPARK: Build Scalable Pipelines with PySpark and Optimization: 4 (Data Extreme Eng)

Sinopsis

LEARN APACHE SPARK Build Scalable Pipelines with PySpark and Optimization

This book is designed for students, developers, data engineers, data scientists, and technology professionals who want to master Apache Spark in practice, in corporate environments, public cloud, and modern integrations.

You will learn to build scalable pipelines for large-scale data processing, orchestrating distributed workloads with AWS EMR, Databricks, Azure Synapse, and Google Cloud Dataproc. The content covers integration with Hadoop, Hive, Kafka, SQL, Delta Lake, MongoDB, and Python, as well as advanced techniques in tuning, job optimization, real-time analysis, machine learning with MLlib, and workflow automation.

Includes:

• Implementation of ETL and ELT pipelines with Spark SQL and DataFrames

• Data streaming processing and integration with Kafka and AWS Kinesis

• Optimization of distributed jobs, performance tuning, and use of Spark UI

• Integration of Spark with S3, Data Lake, NoSQL, and relational databases

• Deployment on managed clusters in AWS, Azure, and Google Cloud

• Applied Machine Learning with MLlib, Delta Lake, and Databricks

• Automation of routines, monitoring, and scalability for Big Data

By the end, you will master Apache Spark as a professional solution for data analysis, process automation, and machine learning in complex, high-performance environments.

Content reviewed by A.I. with technical supervision.

apache spark, big data, pipelines, distributed processing, aws emr, databricks, streaming, etl, machine learning, cloud integration Google Data Engineer, AWS Data Analytics, Azure Data Engineer, Big Data Engineer, MLOps, DataOps Professional

"Sinopsis" puede pertenecer a otra edición de este libro.

Comprar nuevo

Ver este artículo

EUR 6,81 gastos de envío desde Estados Unidos de America a España

Destinos, gastos y plazos de envío

Resultados de la búsqueda para LEARN APACHE SPARK: Build Scalable Pipelines with PySpark...

Imagen de archivo

Rodrigues, Diego; Smart Tech Content, StudioD21
Publicado por Independently published, 2025
ISBN 13: 9798289704603
Nuevo Tapa blanda
Impresión bajo demanda

Librería: California Books, Miami, FL, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Print on Demand. Nº de ref. del artículo: I-9798289704603

Contactar al vendedor

Comprar nuevo

EUR 17,55
Convertir moneda
Gastos de envío: EUR 6,81
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Rodrigues, Diego; Smart Tech Content, StudioD21
Publicado por Independently published, 2025
ISBN 13: 9798289704603
Nuevo Tapa blanda

Librería: Best Price, Torrance, CA, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. SUPER FAST SHIPPING. Nº de ref. del artículo: 9798289704603

Contactar al vendedor

Comprar nuevo

EUR 11,52
Convertir moneda
Gastos de envío: EUR 25,54
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen de archivo

Studiod21 Smart Tech Content
Publicado por Independently Published, 2025
ISBN 13: 9798289704603
Nuevo Paperback

Librería: CitiRetail, Stevenage, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Paperback. Condición: new. Paperback. LEARN APACHE SPARK Build Scalable Pipelines with PySpark and OptimizationThis book is designed for students, developers, data engineers, data scientists, and technology professionals who want to master Apache Spark in practice, in corporate environments, public cloud, and modern integrations.You will learn to build scalable pipelines for large-scale data processing, orchestrating distributed workloads with AWS EMR, Databricks, Azure Synapse, and Google Cloud Dataproc. The content covers integration with Hadoop, Hive, Kafka, SQL, Delta Lake, MongoDB, and Python, as well as advanced techniques in tuning, job optimization, real-time analysis, machine learning with MLlib, and workflow automation.Includes: - Implementation of ETL and ELT pipelines with Spark SQL and DataFrames- Data streaming processing and integration with Kafka and AWS Kinesis- Optimization of distributed jobs, performance tuning, and use of Spark UI- Integration of Spark with S3, Data Lake, NoSQL, and relational databases- Deployment on managed clusters in AWS, Azure, and Google Cloud- Applied Machine Learning with MLlib, Delta Lake, and Databricks- Automation of routines, monitoring, and scalability for Big DataBy the end, you will master Apache Spark as a professional solution for data analysis, process automation, and machine learning in complex, high-performance environments.apache spark, big data, pipelines, distributed processing, aws emr, databricks, streaming, etl, machine learning, cloud integration Google Data Engineer, AWS Data Analytics, Azure Data Engineer, Big Data Engineer, MLOps, DataOps Professional Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. Nº de ref. del artículo: 9798289704603

Contactar al vendedor

Comprar nuevo

EUR 20,09
Convertir moneda
Gastos de envío: EUR 34,44
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

Studiod21 Smart Tech Content
Publicado por Independently Published, 2025
ISBN 13: 9798289704603
Nuevo Paperback

Librería: Grand Eagle Retail, Mason, OH, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Paperback. Condición: new. Paperback. LEARN APACHE SPARK Build Scalable Pipelines with PySpark and OptimizationThis book is designed for students, developers, data engineers, data scientists, and technology professionals who want to master Apache Spark in practice, in corporate environments, public cloud, and modern integrations.You will learn to build scalable pipelines for large-scale data processing, orchestrating distributed workloads with AWS EMR, Databricks, Azure Synapse, and Google Cloud Dataproc. The content covers integration with Hadoop, Hive, Kafka, SQL, Delta Lake, MongoDB, and Python, as well as advanced techniques in tuning, job optimization, real-time analysis, machine learning with MLlib, and workflow automation.Includes: - Implementation of ETL and ELT pipelines with Spark SQL and DataFrames- Data streaming processing and integration with Kafka and AWS Kinesis- Optimization of distributed jobs, performance tuning, and use of Spark UI- Integration of Spark with S3, Data Lake, NoSQL, and relational databases- Deployment on managed clusters in AWS, Azure, and Google Cloud- Applied Machine Learning with MLlib, Delta Lake, and Databricks- Automation of routines, monitoring, and scalability for Big DataBy the end, you will master Apache Spark as a professional solution for data analysis, process automation, and machine learning in complex, high-performance environments.apache spark, big data, pipelines, distributed processing, aws emr, databricks, streaming, etl, machine learning, cloud integration Google Data Engineer, AWS Data Analytics, Azure Data Engineer, Big Data Engineer, MLOps, DataOps Professional Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Nº de ref. del artículo: 9798289704603

Contactar al vendedor

Comprar nuevo

EUR 19,69
Convertir moneda
Gastos de envío: EUR 63,89
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito