A professional, applied manual for designing, building, and operationalizing knowledge graphs that materially improve LLM-driven systems. This book provides the end-to-end technical roadmap data ingestion, entity/relation extraction, schema design, storage, querying, and LLM integration required to create explainable, high-precision hybrid AI systems.
What’s inside
"Sinopsis" puede pertenecer a otra edición de este libro.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 51341059-n
Cantidad disponible: Más de 20 disponibles
Librería: Grand Eagle Retail, Bensenville, IL, Estados Unidos de America
Paperback. Condición: new. Paperback. A professional, applied manual for designing, building, and operationalizing knowledge graphs that materially improve LLM-driven systems. This book provides the end-to-end technical roadmap data ingestion, entity/relation extraction, schema design, storage, querying, and LLM integration required to create explainable, high-precision hybrid AI systems.What's insideFundamentals of graph modeling, schema & ontology design, and graph theory essentials.Practical pipelines for extracting structured facts from unstructured text using NLP and embeddings.Integration patterns for Neo4j/RDF/graph stores, vector databases, and RAG architectures.Querying and analytics: SPARQL, Cypher, and hybrid retrieval approaches.Performance optimization, versioning, governance, and visualization techniques.Domain case studies (healthcare, finance, enterprise search) demonstrating measurable ROI.Key topics;knowledge graphs, graph databases, ontology design, entity extraction, SPARQL, Cypher, RAG, embeddings, semantic search, graph-augmented LLMs, information retrieval, data governance.Who should read thisData engineers, knowledge engineers, ML/AI practitioners, and technical product managers tasked with building authoritative retrieval systems or explainable AI features. A working knowledge of databases and basic NLP is helpful.Deliverables & formatReproducible projects that convert raw text into production-ready graph assets.Query recipes, integration blueprints, and operational guidelines for graph maintenance and scaling. This item is printed on demand. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Nº de ref. del artículo: 9798264455261
Cantidad disponible: 1 disponibles
Librería: California Books, Miami, FL, Estados Unidos de America
Condición: New. Print on Demand. Nº de ref. del artículo: I-9798264455261
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 51341059
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 51341059
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
Condición: New. Nº de ref. del artículo: 51341059-n
Cantidad disponible: Más de 20 disponibles
Librería: CitiRetail, Stevenage, Reino Unido
Paperback. Condición: new. Paperback. A professional, applied manual for designing, building, and operationalizing knowledge graphs that materially improve LLM-driven systems. This book provides the end-to-end technical roadmap data ingestion, entity/relation extraction, schema design, storage, querying, and LLM integration required to create explainable, high-precision hybrid AI systems.What's insideFundamentals of graph modeling, schema & ontology design, and graph theory essentials.Practical pipelines for extracting structured facts from unstructured text using NLP and embeddings.Integration patterns for Neo4j/RDF/graph stores, vector databases, and RAG architectures.Querying and analytics: SPARQL, Cypher, and hybrid retrieval approaches.Performance optimization, versioning, governance, and visualization techniques.Domain case studies (healthcare, finance, enterprise search) demonstrating measurable ROI.Key topics;knowledge graphs, graph databases, ontology design, entity extraction, SPARQL, Cypher, RAG, embeddings, semantic search, graph-augmented LLMs, information retrieval, data governance.Who should read thisData engineers, knowledge engineers, ML/AI practitioners, and technical product managers tasked with building authoritative retrieval systems or explainable AI features. A working knowledge of databases and basic NLP is helpful.Deliverables & formatReproducible projects that convert raw text into production-ready graph assets.Query recipes, integration blueprints, and operational guidelines for graph maintenance and scaling. This item is printed on demand. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. Nº de ref. del artículo: 9798264455261
Cantidad disponible: 1 disponibles