Graph-RAG Engineering shows how to combine structured knowledge from Knowledge Graphs with Large Language Models to build context-aware, explainable, and high-precision AI applications. The book covers graph modeling (RDF, property graphs), building and maintaining knowledge graphs with Neo4j/RDFLib, querying with SPARQL and Cypher, and creating Graph-RAG pipelines that fuse graph retrieval with dense vector search. Learn multi-hop reasoning, graph neural networks (GNN) for link prediction and entity disambiguation, temporal and streaming graph updates, and strategies for keeping graphs consistent and fresh. Practical projects include personalized recommendation systems, scientific discovery assistants, legal & regulatory search, and enterprise knowledge hubs. The book also addresses schema design, entity linking, provenance, versioning, and production considerations (ETL, connectors, monitoring).
Key topics: knowledge graph design, Neo4j/Cypher, RDF/SPARQL, entity linking & canonicalization, Graph-RAG fusion, vector + graph hybrid retrieval, GNNs, temporal graphs, production ETL & governance.
"Sinopsis" puede pertenecer a otra edición de este libro.
GRATIS gastos de envío en Estados Unidos de America
Destinos, gastos y plazos de envíoLibrería: California Books, Miami, FL, Estados Unidos de America
Condición: New. Print on Demand. Nº de ref. del artículo: I-9798262670468
Cantidad disponible: Más de 20 disponibles
Librería: Best Price, Torrance, CA, Estados Unidos de America
Condición: New. SUPER FAST SHIPPING. Nº de ref. del artículo: 9798262670468
Cantidad disponible: 2 disponibles