Artículos relacionados a Spatiotemporal Data Analytics and Modeling: Techniques...

Spatiotemporal Data Analytics and Modeling: Techniques and Applications (Big Data Management) - Tapa dura

 
9789819996506: Spatiotemporal Data Analytics and Modeling: Techniques and Applications (Big Data Management)

Sinopsis

With the growing advances in technology and transformation to digital services, the world is becoming more connected and more complex. Huge heterogeneous data are generated at rapid speed from various types of sensors. Augmented with artificial intelligence and machine learning and internet of things, latent relations, and new insights can be captured helping in optimizing plans and resource utilization, improving infrastructure, and enhancing quality of services.

A "spatial data management system" is a way to take care of data that has something to do with space. This could include data such as maps, satellite images, and GPS data. A temporal data management system is a system designed to manage data that has a temporal component. This could include data such as weather data, financial data, and social media data. Some advanced techniques used in spatial and temporal data management systems include geospatial indexing for efficient querying and retrieval of location-based data, time-series analysis for understanding and predicting temporal patterns in datasets like weather or financial trends, machine learning algorithms for uncovering hidden patterns and correlations in large and complex datasets, and integration with Internet of Things (IoT) technologies for real-time data collection and analysis. These techniques, augmented with artificial intelligence, enable the extraction of latent relations and insights, thereby optimizing plans, improving infrastructure, and enhancing the quality of services.

This book provides essential technical knowledge, best practices, and case studies on the state-of-the-art techniques of artificial intelligence and machine learning for spatiotemporal data analysis and modeling. The book is composed of several chapters written by experts in their fields and focusing on several applications including recommendation systems, big data analytics, supply chains and e-commerce, energy consumption and demand forecasting,and traffic and environmental monitoring. It can be used as academic reference at graduate level or by professionals in science and engineering related fields such as data science and engineering, big data analytics and mining, artificial intelligence, machine learning and deep learning, cloud computing, and internet of things.

 


"Sinopsis" puede pertenecer a otra edición de este libro.

Acerca del autor

Dr. John A is currently working as a postdoctoral research fellow at AI and Sustainable Development Research Lab, National Taiwan University, Taipei, Taiwan. Pondicherry University awarded him an undergraduate degree in Computer Science and Engineering Discipline. He earned a postgraduate degree (MTech. in Computer Science and Engineering at Pondicherry University, India). In 2019, he completed  his PhD in Computer Science and Engineering at Manonmaniam Sundaranar University, India. His research areas of interest are real-time applications, machine learning, data analysis and prediction, and spatial and temporal data management.

 

Satheesh Abimannan is currently a professor and deputy director in Amity School Engineering and Technology at Amity University, Mumbai. He served as a postdoctoral research fellow at National Taipei University, Taiwan, for one year. He received the ME degree in Computer Science and Engineering from the College of Engineering, Guindy, Anna University, Chennai, and a PhD degree in Computer Science and Engineering from the Periyar Maniammai University. He has more than 20 years of teaching, research, and administrative experience. He received an ISTE-Young Scientist Award in 2010. He has published more than 40 research articles in highly reputed international journals and visited Singapore, China, Taiwan, and Japan to present his research article at international conferences. His research interest includes deep learning, cloud computing, big data analytics, and information security.

 

El-Sayed M. El-Alfy (Senior Member, IEEE) is currently a professor with the Information and Computer Science Department, fellow of the SDAIA-KFUPM Joint Research Center for Artificial Intelligence, affiliate of Interdisciplinary Research Center on Intelligent Secure Systems, King Fahd University of Petroleum and Minerals (KFUPM), Saudi Arabia. He has over 25 years of experience in industry and academia, involving research, teaching, supervision, curriculum design, program assessment, and quality assurance in higher education. He is an approved ABET/CSAB program evaluator (PEV), and a reviewer and consultant for NCAAA and several universities and research agents in various countries. He is an active researcher with interests in fields related to machine learning, computer vision, nature-inspired computing and applications to data science and cybersecurity analytics, pattern recognition, multimedia forensics, and security systems. He has published numerously in peer-reviewed international journals and conferences, edited a number of books published by reputable international publishers, attended and contributed in the organization of many world-class international conferences, and supervised master and PhD students. He was also a member of ACM, the IEEE Computational Intelligence Society, the IEEE Computer Society, the IEEE Communication Society, and the IEEE Vehicular Technology Society. His work has been internationally recognized and received a number of awards. He has served as a guest editor for a number of special issues in international journals and has been on the editorial board of a number of premium  international journals, including IEEE/CAA Journal of Automatica Sinica, IEEE Transactions on Neural Networks and Learning Systems, International Journal of Trust Management in Computing and Communications, and Journal of Emerging Technologies in Web Intelligence (JETWI).

 

Yue-Shan Chang (Senior Member, IEEE) received the PhD degree from the Department of Computer and Information Science, National Chiao Tung University, in 2001. In August 1992, he joined the Department of Electronic Engineering, Ming Hsing University of Science and Technology. In August 2004, he joined the Department of Computer Science and Information Engineering, National Taipei University, Taipei, Taiwan. In August 2010, he became a professor. He has been serving as the chairman of the Department, since 2014, and the dean of Student Affairs, since 2018. His research interests include information and knowledge fusion, big data analytics, cloud computing, intelligent computing, and the Internet of Things.

 


De la contraportada

With the growing advances in technology and transformation to digital services, the world is becoming more connected and more complex. Huge heterogeneous data are generated at rapid speed from various types of sensors. Augmented with artificial intelligence and machine learning and internet of things, latent relations, and new insights can be captured helping in optimizing plans and resource utilization, improving infrastructure, and enhancing quality of services.

A “spatial data management system” is a way to take care of data that has something to do with space. This could include data such as maps, satellite images, and GPS data. A temporal data management system is a system designed to manage data that has a temporal component. This could include data such as weather data, financial data, and social media data. Some advanced techniques used in spatial and temporal data management systems include geospatial indexing for efficient querying and retrieval of location-based data, time-series analysis for understanding and predicting temporal patterns in datasets like weather or financial trends, machine learning algorithms for uncovering hidden patterns and correlations in large and complex datasets, and integration with Internet of Things (IoT) technologies for real-time data collection and analysis. These techniques, augmented with artificial intelligence, enable the extraction of latent relations and insights, thereby optimizing plans, improving infrastructure, and enhancing the quality of services.

This book provides essential technical knowledge, best practices, and case studies on the state-of-the-art techniques of artificial intelligence and machine learning for spatiotemporal data analysis and modeling. The book is composed of several chapters written by experts in their fields and focusing on several applications including recommendation systems, big data analytics, supply chains and e-commerce, energy consumption and demand forecasting, and traffic and environmental monitoring. It can be used as academic reference at graduate level or by professionals in science and engineering related fields such as data science and engineering, big data analytics and mining, artificial intelligence, machine learning and deep learning, cloud computing, and internet of things.

 


"Sobre este título" puede pertenecer a otra edición de este libro.

Comprar usado

Condición: Como Nuevo
Unread book in perfect condition...
Ver este artículo

EUR 17,42 gastos de envío desde Reino Unido a España

Destinos, gastos y plazos de envío

Comprar nuevo

Ver este artículo

EUR 19,49 gastos de envío desde Alemania a España

Destinos, gastos y plazos de envío

Otras ediciones populares con el mismo título

9789819996537: Spatiotemporal Data Analytics and Modeling: Techniques and Applications (Big Data Management)

Edición Destacada

ISBN 10:  9819996538 ISBN 13:  9789819996537
Editorial: Springer, 2025
Tapa blanda

Resultados de la búsqueda para Spatiotemporal Data Analytics and Modeling: Techniques...

Imagen del vendedor

Publicado por Springer Nature Singapore, 2024
ISBN 10: 9819996503 ISBN 13: 9789819996506
Nuevo Tapa dura
Impresión bajo demanda

Librería: moluna, Greven, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Provides essential theory and practice for real-world scenarios of spatiotemporal data management and modelling Presents the state-of-the-art techniques to leverage AI and ML for spatiotemporal data analyticsIncludes rich real-world practic. Nº de ref. del artículo: 1276622507

Contactar al vendedor

Comprar nuevo

EUR 153,73
Convertir moneda
Gastos de envío: EUR 19,49
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Publicado por Springer, 2024
ISBN 10: 9819996503 ISBN 13: 9789819996506
Nuevo Tapa dura

Librería: Ria Christie Collections, Uxbridge, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. In. Nº de ref. del artículo: ria9789819996506_new

Contactar al vendedor

Comprar nuevo

EUR 178,97
Convertir moneda
Gastos de envío: EUR 5,21
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

John A
ISBN 10: 9819996503 ISBN 13: 9789819996506
Nuevo Tapa dura
Impresión bajo demanda

Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Buch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -With the growing advances in technology and transformation to digital services, the world is becoming more connected and more complex. Huge heterogeneous data are generated at rapid speed from various types of sensors. Augmented with artificial intelligence and machine learning and internet of things, latent relations, and new insights can be captured helping in optimizing plans and resource utilization, improving infrastructure, and enhancing quality of services.A 'spatial data management system' is a way to take care of data that has something to do with space. This could include data such as maps, satellite images, and GPS data. A temporal data management system is a system designed to manage data that has a temporal component. This could include data such as weather data, financial data, and social media data. Some advanced techniques used in spatial and temporal data management systems include geospatial indexing for efficient querying and retrieval of location-based data, time-series analysis for understanding and predicting temporal patterns in datasets like weather or financial trends, machine learning algorithms for uncovering hidden patterns and correlations in large and complex datasets, and integration with Internet of Things (IoT) technologies for real-time data collection and analysis. These techniques, augmented with artificial intelligence, enable the extraction of latent relations and insights, thereby optimizing plans, improving infrastructure, and enhancing the quality of services. This book provides essential technical knowledge, best practices, and case studies on the state-of-the-art techniques of artificial intelligence and machine learning for spatiotemporal data analysis and modeling. The book is composed of several chapters written by experts in their fields and focusing on several applications including recommendation systems, big data analytics, supply chains and e-commerce, energy consumption and demand forecasting,and traffic and environmental monitoring. It can be used as academic reference at graduate level or by professionals in science and engineering related fields such as data science and engineering, big data analytics and mining, artificial intelligence, machine learning and deep learning, cloud computing, and internet of things. 260 pp. Englisch. Nº de ref. del artículo: 9789819996506

Contactar al vendedor

Comprar nuevo

EUR 181,89
Convertir moneda
Gastos de envío: EUR 11,00
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen de archivo

A, John (EDT); Abimannan, Satheesh (EDT); El-alfy, El-sayed M. (EDT); Chang, Yue-shan (EDT)
Publicado por Springer, 2024
ISBN 10: 9819996503 ISBN 13: 9789819996506
Nuevo Tapa dura

Librería: GreatBookPricesUK, Woodford Green, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: 47499919-n

Contactar al vendedor

Comprar nuevo

EUR 178,95
Convertir moneda
Gastos de envío: EUR 17,42
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

John A
ISBN 10: 9819996503 ISBN 13: 9789819996506
Nuevo Tapa dura

Librería: AHA-BUCH GmbH, Einbeck, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Buch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - With the growing advances in technology and transformation to digital services, the world is becoming more connected and more complex. Huge heterogeneous data are generated at rapid speed from various types of sensors. Augmented with artificial intelligence and machine learning and internet of things, latent relations, and new insights can be captured helping in optimizing plans and resource utilization, improving infrastructure, and enhancing quality of services.A 'spatial data management system' is a way to take care of data that has something to do with space. This could include data such as maps, satellite images, and GPS data. A temporal data management system is a system designed to manage data that has a temporal component. This could include data such as weather data, financial data, and social media data. Some advanced techniques used in spatial and temporal data management systems include geospatial indexing for efficient querying and retrieval of location-based data, time-series analysis for understanding and predicting temporal patterns in datasets like weather or financial trends, machine learning algorithms for uncovering hidden patterns and correlations in large and complex datasets, and integration with Internet of Things (IoT) technologies for real-time data collection and analysis. These techniques, augmented with artificial intelligence, enable the extraction of latent relations and insights, thereby optimizing plans, improving infrastructure, and enhancing the quality of services. This book provides essential technical knowledge, best practices, and case studies on the state-of-the-art techniques of artificial intelligence and machine learning for spatiotemporal data analysis and modeling. The book is composed of several chapters written by experts in their fields and focusing on several applications including recommendation systems, big data analytics, supply chains and e-commerce, energy consumption and demand forecasting,and traffic and environmental monitoring. It can be used as academic reference at graduate level or by professionals in science and engineering related fields such as data science and engineering, big data analytics and mining, artificial intelligence, machine learning and deep learning, cloud computing, and internet of things. Nº de ref. del artículo: 9789819996506

Contactar al vendedor

Comprar nuevo

EUR 185,68
Convertir moneda
Gastos de envío: EUR 11,99
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

A, John (EDT); Abimannan, Satheesh (EDT); El-alfy, El-sayed M. (EDT); Chang, Yue-shan (EDT)
Publicado por Springer, 2024
ISBN 10: 9819996503 ISBN 13: 9789819996506
Nuevo Tapa dura

Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: 47499919-n

Contactar al vendedor

Comprar nuevo

EUR 197,13
Convertir moneda
Gastos de envío: EUR 17,16
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

A, John (EDT); Abimannan, Satheesh (EDT); El-alfy, El-sayed M. (EDT); Chang, Yue-shan (EDT)
Publicado por Springer, 2024
ISBN 10: 9819996503 ISBN 13: 9789819996506
Antiguo o usado Tapa dura

Librería: GreatBookPricesUK, Woodford Green, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 47499919

Contactar al vendedor

Comprar usado

EUR 198,22
Convertir moneda
Gastos de envío: EUR 17,42
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

A, John (EDT); Abimannan, Satheesh (EDT); El-alfy, El-sayed M. (EDT); Chang, Yue-shan (EDT)
Publicado por Springer, 2024
ISBN 10: 9819996503 ISBN 13: 9789819996506
Antiguo o usado Tapa dura

Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 47499919

Contactar al vendedor

Comprar usado

EUR 198,74
Convertir moneda
Gastos de envío: EUR 17,16
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Publicado por Springer, 2024
ISBN 10: 9819996503 ISBN 13: 9789819996506
Nuevo Tapa dura

Librería: California Books, Miami, FL, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: I-9789819996506

Contactar al vendedor

Comprar nuevo

EUR 209,52
Convertir moneda
Gastos de envío: EUR 6,87
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

John A
ISBN 10: 9819996503 ISBN 13: 9789819996506
Nuevo Tapa dura

Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Buch. Condición: Neu. Neuware -With the growing advances in technology and transformation to digital services, the world is becoming more connected and more complex. Huge heterogeneous data are generated at rapid speed from various types of sensors. Augmented with artificial intelligence and machine learning and internet of things, latent relations, and new insights can be captured helping in optimizing plans and resource utilization, improving infrastructure, and enhancing quality of services.A ¿spatial data management system¿ is a way to take care of data that has something to do with space. This could include data such as maps, satellite images, and GPS data. A temporal data management system is a system designed to manage data that has a temporal component. This could include data such as weather data, financial data, and social media data. Some advanced techniques used in spatial and temporal data management systems include geospatial indexing for efficient querying and retrieval of location-based data, time-series analysis for understanding and predicting temporal patterns in datasets like weather or financial trends, machine learning algorithms for uncovering hidden patterns and correlations in large and complex datasets, and integration with Internet of Things (IoT) technologies for real-time data collection and analysis. These techniques, augmented with artificial intelligence, enable the extraction of latent relations and insights, thereby optimizing plans, improving infrastructure, and enhancing the quality of services.This book provides essential technical knowledge, best practices, and case studies on the state-of-the-art techniques of artificial intelligence and machine learning for spatiotemporal data analysis and modeling. The book is composed of several chapters written by experts in their fields and focusing on several applications including recommendation systems, big data analytics, supply chains and e-commerce, energy consumption and demand forecasting,and traffic and environmental monitoring. It can be used as academic reference at graduate level or by professionals in science and engineering related fields such as data science and engineering, big data analytics and mining, artificial intelligence, machine learning and deep learning, cloud computing, and internet of things.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 260 pp. Englisch. Nº de ref. del artículo: 9789819996506

Contactar al vendedor

Comprar nuevo

EUR 181,89
Convertir moneda
Gastos de envío: EUR 35,00
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Existen otras 5 copia(s) de este libro

Ver todos los resultados de su búsqueda