Artículos relacionados a Recommender Systems: Frontiers and Practices

Recommender Systems: Frontiers and Practices - Tapa blanda

 
9789819989669: Recommender Systems: Frontiers and Practices

Sinopsis

This book starts from the classic recommendation algorithms, introduces readers to the basic principles and main concepts of the traditional algorithms, and analyzes their advantages and limitations. Then, it addresses the fundamentals of deep learning, focusing on the deep-learning-based technology used, and analyzes problems arising in the theory and practice of recommender systems, helping readers gain a deeper understanding of the cutting-edge technology used in these systems. Lastly, it shares practical experience with Microsoft 's open source project Microsoft Recommenders. Readers can learn the design principles of recommendation algorithms using the source code provided in this book, allowing them to quickly build accurate and efficient recommender systems from scratch.

"Sinopsis" puede pertenecer a otra edición de este libro.

Acerca del autor

Dongsheng Li has been a principal research manager with Microsoft Research Asia (MSRA) since February 2020. His research interests include recommender systems and general machine learning applications. He has published over 100 papers in top-tier conferences and journals and has served as a program committee member for leading conferences.

Dr. Jianxun Lian graduated from the University of Science and Technology of China and is currently a senior researcher with Microsoft Research Asia. His research interests mainly include recommendation systems, user modeling, and deep-learning-related technologies.

Le Zhang is a machine learning architect with Standard Chartered Bank. He has extensive experience in applying cutting-edge machine learning and artificial intelligence technology to accelerate digital transformation for enterprises and start-ups.

Kan Ren is a senior researcher with Microsoft Research. His main research interests include spatiotemporal data mining, reasoning, and decision optimization with applications in healthcare, recommender systems, and finance. Kan has published many papers in top-tier conferences on machine learning and data mining.

Tun LU is currently a full professor with the School of Computer Science, Fudan University, China. His research interests include computer-supported cooperative work (CSCW), social computing, recommender systems, and human–computer interaction (HCI). He has published more than 80 peer-reviewed publications in prestigious conferences and journals. 

Tao Wu is a Principal Applied Science Manager at Microsoft's Business Applications and Platform Group, and leading product development efforts utilizing large language models and generative AI. He spearheaded the creation of the Microsoft Recommenders project (recently donated to the Linux Foundation), which has become one of the most popular open source projects on recommender systems.  Prior to Microsoft, Tao held various research, engineering and leadership positions at Nokia Research Center and MIT CSAIL.

Dr. Xing Xie is currently a senior principal research manager with Microsoft Research Asia. In the past several years, he has published over 300 papers, won the 2022 ACM SIGKDD 2022 Test-of-Time Award and 2021 ACM SIGKDD China Test-of-Time Award, received the 10-Year Impact Award (honorable mention) at ACM SIGSPATIAL 2020, and won the 10-Year Impact Award at ACM SIGSPATIAL 2019. He currently serves on the editorial boards of ACM Transactions on Recommender Systems (ToRS), ACM Transactions on Social Computing (TSC), and ACM Transactions on Intelligent Systems and Technology (TIST).

De la contraportada

This book starts from the classic recommendation algorithms, introduces readers to the basic principles and main concepts of the traditional algorithms, and analyzes their advantages and limitations. Then, it addresses the fundamentals of deep learning, focusing on the deep-learning-based technology used, and analyzes problems arising in the theory and practice of recommender systems, helping readers gain a deeper understanding of the cutting-edge technology used in these systems. Lastly, it shares practical experience with Microsoft 's open source project Microsoft Recommenders. Readers can learn the design principles of recommendation algorithms using the source code provided in this book, allowing them to quickly build accurate and efficient recommender systems from scratch.

"Sobre este título" puede pertenecer a otra edición de este libro.

Comprar nuevo

Ver este artículo

EUR 11,00 gastos de envío desde Alemania a España

Destinos, gastos y plazos de envío

Otras ediciones populares con el mismo título

9789819989638: Recommender Systems: Frontiers and Practices

Edición Destacada

ISBN 10:  9819989639 ISBN 13:  9789819989638
Editorial: Springer, 2024
Tapa dura

Resultados de la búsqueda para Recommender Systems: Frontiers and Practices

Imagen de archivo

Dongsheng Li
ISBN 10: 9819989663 ISBN 13: 9789819989669
Nuevo Taschenbuch
Impresión bajo demanda

Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware 296 pp. Englisch. Nº de ref. del artículo: 9789819989669

Contactar al vendedor

Comprar nuevo

EUR 58,84
Convertir moneda
Gastos de envío: EUR 11,00
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen de archivo

Dongsheng Li
ISBN 10: 9819989663 ISBN 13: 9789819989669
Nuevo Taschenbuch

Librería: AHA-BUCH GmbH, Einbeck, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering. Nº de ref. del artículo: 9789819989669

Contactar al vendedor

Comprar nuevo

EUR 63,87
Convertir moneda
Gastos de envío: EUR 11,99
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

Li, Dongsheng; Lian, Jianxun; Zhang, Le; Ren, Kan; Lu, Tun; Wu, Tao; Xie, Xing
Publicado por Springer, 2025
ISBN 10: 9819989663 ISBN 13: 9789819989669
Nuevo Tapa blanda
Impresión bajo demanda

Librería: Majestic Books, Hounslow, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Print on Demand pp. 296. Nº de ref. del artículo: 409887343

Contactar al vendedor

Comprar nuevo

EUR 82,97
Convertir moneda
Gastos de envío: EUR 10,19
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: 4 disponibles

Añadir al carrito

Imagen del vendedor

Dongsheng Li
ISBN 10: 9819989663 ISBN 13: 9789819989669
Nuevo Taschenbuch
Impresión bajo demanda

Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. This item is printed on demand - Print on Demand Titel. Neuware -This book starts from the classic recommendation algorithms, introduces readers to the basic principles and main concepts of the traditional algorithms, and analyzes their advantages and limitations. Then, it addresses the fundamentals of deep learning, focusing on the deep-learning-based technology used, and analyzes problems arising in the theory and practice of recommender systems, helping readers gain a deeper understanding of the cutting-edge technology used in these systems. Lastly, it shares practical experience with Microsoft 's open source project Microsoft Recommenders. Readers can learn the design principles of recommendation algorithms using the source code provided in this book, allowing them to quickly build accurate and efficient recommender systems from scratch.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 296 pp. Englisch. Nº de ref. del artículo: 9789819989669

Contactar al vendedor

Comprar nuevo

EUR 58,84
Convertir moneda
Gastos de envío: EUR 35,00
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

Li, Dongsheng; Lian, Jianxun; Zhang, Le; Ren, Kan; Lu, Tun; Wu, Tao; Xie, Xing
Publicado por Springer, 2025
ISBN 10: 9819989663 ISBN 13: 9789819989669
Nuevo Tapa blanda
Impresión bajo demanda

Librería: Biblios, Frankfurt am main, HESSE, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. PRINT ON DEMAND pp. 296. Nº de ref. del artículo: 18404348346

Contactar al vendedor

Comprar nuevo

EUR 86,06
Convertir moneda
Gastos de envío: EUR 14,50
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 4 disponibles

Añadir al carrito