Artículos relacionados a Deep Learning Applications in Image Analysis: 129 (Studies...

Deep Learning Applications in Image Analysis: 129 (Studies in Big Data) - Tapa blanda

 
9789819937868: Deep Learning Applications in Image Analysis: 129 (Studies in Big Data)

Sinopsis

This book provides state-of-the-art coverage of deep learning applications in image analysis. The book demonstrates various deep learning algorithms that can offer practical solutions for various image-related problems; also how these algorithms are used by scientists and scholars in industry and academia. This includes autoencoder and deep convolutional generative adversarial network in improving classification performance of Bangla handwritten characters, dealing with deep learning-based approaches using feature selection methods for automatic diagnosis of covid-19 disease from x-ray images, imbalance image data sets of classification, image captioning using deep transfer learning, developing a vehicle over speed detection system, creating an intelligent system for video-based proximity analysis, building a melanoma cancer detection system using deep learning, plant diseases classification using AlexNet, dealing with hyperspectral images using deep learning, chest x-ray image classification of pneumonia disease using efficient net and inceptionv3.
The book also addresses the difficulty of implementing deep learning in terms of computation time and the complexity of reasoning and modelling different types of data where information is currently encoded. Each chapter has the application of various new or existing deep learning models such as Deep Neural Network (DNN) and Deep Convolutional Neural Networks (DCNN). The detailed utilization of deep learning packages that are available in MATLAB, Python and R programming environments have also been discussed, therefore, the readers will get to know about the practical implementation of deep learning as well. The content of this book is presented in a simple and lucid style for professionals, nonprofessionals, scientists, and students interested in the research area of deep learning applications in image analysis.

"Sinopsis" puede pertenecer a otra edición de este libro.

Acerca del autor

Sanjiban Sekhar Roy is currently a Professor with the School of Computer Science and Engineering,Vellore Institute of Technology. He received Ph.D. degree from the Vellore Institute of Technology, Vellore, India, in 2016. He has edited handful of special issues for journals, published numerous articles in SCI high impact journals such as IEEE Transactions on Computational social systems; Scientific Reports,Nature; Computers and Electrical Engineering, Elsevier and many other reputed journals;Dr Roy has published nine books with reputed international publishers such as Springer, Elsevier and IGI Global. His research interests are deep learning and advanced machine learning.Dr. Roy was a recipient of the “Diploma of Excellence” Award for academic research from the Ministry of National Education, Romania. He was also an Associate Researcher with Ton Duc Thang University, Ho Chi Minh City, Vietnam, during 2019 to 2020.Ching-Hsien Hsu is Chair Professor of the College of Information and Electrical Engineering, Asia University, Taiwan; Professor in the department of Computer Science and Information Engineering, National Chung Cheng University; Research Consultant, Dept. of Medical Research, China Medical University Hospital, China Medical University, Taiwan. His research includes cloud and edge computing, big data analytics, high performance computing systems, parallel and distributed systems, artificial intelligence, medical AI and natural language processing. He has published 350+ papers in top journals such as IEEE TPDS, IEEE TSC, ACM TOMM, IEEE TCC, IEEE TETC, IEEE System, IEEE Network, top conferences, and book chapters in these areas. Dr. Hsu is the editor-in-chief of International Journal of Grid and High Performance Computing, and International Journal of Big Data Intelligence; and serving as editorial board for a number of prestigious journals, including IEEE Transactions on Service Computing, IEEE Transactions on Cloud Computing, International Journal of Cloud Computing, Journal of Communication Systems, International Journal of Computational Science, AutoSoft Journal. He has been acting as an author/co-author or an editor/co-editor of 10 books from Elsevier, Springer, IGI Global, World Scientific and McGraw-Hill. Dr. Hsu was awarded seven times talent awards from Ministry of Science and Technology, Ministry of Education, and nine times distinguished award for excellence in research from Chung Hua University, Taiwan. Prof. Hsu is president of Taiwan Association of Cloud Coputing; Chair of IEEE Technical Committee on Cloud Computing (TCCLD); Fellow of the IET (IEE) and senior member of the IEEE.

Venkateswara Rao Kagita is an Assistant Professor at NIT Warangal. He has obtained Ph.D from the University of Hyderabad. His research interests are Data Mining, Machine Learning, and Deep learning with a specific focus on machine learning techniques for recommender systems. His research works have been published in various reputed journals and conference proceedings. He has also delivered various guest lectures in several International and National workshops, IITs, NITs, and Universities.

De la contraportada

This book provides state-of-the-art coverage of deep learning applications in image analysis. The book demonstrates various deep learning algorithms that can offer practical solutions for various image-related problems; also how these algorithms are used by scientists and scholars in industry and academia. This includes autoencoder and deep convolutional generative adversarial network in improving classification performance of Bangla handwritten characters, dealing with deep learning-based approaches using feature selection methods for automatic diagnosis of covid-19 disease from x-ray images, imbalance image data sets of classification, image captioning using deep transfer learning, developing a vehicle over speed detection system, creating an intelligent system for video-based proximity analysis, building a melanoma cancer detection system using deep learning, plant diseases classification using AlexNet, dealing with hyperspectral images using deep learning, chest x-ray image classification of pneumonia disease using efficient net and inceptionv3.

The book also addresses the difficulty of implementing deep learning in terms of computation time and the complexity of reasoning and modelling different types of data where information is currently encoded. Each chapter has the application of various new or existing deep learning models such as Deep Neural Network (DNN) and Deep Convolutional Neural Networks (DCNN). The detailed utilization of deep learning packages that are available in MATLAB, Python and R programming environments have also been discussed, therefore, the readers will get to know about the practical implementation of deep learning as well. The content of this book is presented in a simple and lucid style for professionals, nonprofessionals, scientists, and students interested in the research area of deep learning applications in image analysis.

"Sobre este título" puede pertenecer a otra edición de este libro.

Comprar nuevo

Ver este artículo

EUR 11,00 gastos de envío desde Alemania a España

Destinos, gastos y plazos de envío

Otras ediciones populares con el mismo título

9789819937837: Deep Learning Applications in Image Analysis: 129 (Studies in Big Data)

Edición Destacada

ISBN 10:  9819937833 ISBN 13:  9789819937837
Editorial: Springer-Verlag GmbH, 2023
Tapa dura

Resultados de la búsqueda para Deep Learning Applications in Image Analysis: 129 (Studies...

Imagen del vendedor

Sanjiban Sekhar Roy
ISBN 10: 9819937868 ISBN 13: 9789819937868
Nuevo Taschenbuch
Impresión bajo demanda

Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book provides state-of-the-art coverage of deep learning applications in image analysis. The book demonstrates various deep learning algorithms that can offer practical solutions for various image-related problems; also how these algorithms are used by scientists and scholars in industry and academia. This includes autoencoder and deep convolutional generative adversarial network in improving classification performance of Bangla handwritten characters, dealing with deep learning-based approaches using feature selection methods for automatic diagnosis of covid-19 disease from x-ray images, imbalance image data sets of classification, image captioning using deep transfer learning, developing a vehicle over speed detection system, creating an intelligent system for video-based proximity analysis, building a melanoma cancer detection system using deep learning, plant diseases classification using AlexNet, dealing with hyperspectral images using deep learning, chest x-ray image classification of pneumonia disease using efficient net and inceptionv3.The book also addresses the difficulty of implementing deep learning in terms of computation time and the complexity of reasoning and modelling different types of data where information is currently encoded. Each chapter has the application of various new or existing deep learning models such as Deep Neural Network (DNN) and Deep Convolutional Neural Networks (DCNN). The detailed utilization of deep learning packages that are available in MATLAB, Python and R programming environments have also been discussed, therefore, the readers will get to know about the practical implementation of deep learning as well. The content of this book is presented in a simple and lucid style for professionals, nonprofessionals, scientists, and students interested in the research area of deep learning applications in image analysis. 224 pp. Englisch. Nº de ref. del artículo: 9789819937868

Contactar al vendedor

Comprar nuevo

EUR 267,49
Convertir moneda
Gastos de envío: EUR 11,00
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen del vendedor

Sanjiban Sekhar Roy
ISBN 10: 9819937868 ISBN 13: 9789819937868
Nuevo Taschenbuch

Librería: AHA-BUCH GmbH, Einbeck, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book provides state-of-the-art coverage of deep learning applications in image analysis. The book demonstrates various deep learning algorithms that can offer practical solutions for various image-related problems; also how these algorithms are used by scientists and scholars in industry and academia. This includes autoencoder and deep convolutional generative adversarial network in improving classification performance of Bangla handwritten characters, dealing with deep learning-based approaches using feature selection methods for automatic diagnosis of covid-19 disease from x-ray images, imbalance image data sets of classification, image captioning using deep transfer learning, developing a vehicle over speed detection system, creating an intelligent system for video-based proximity analysis, building a melanoma cancer detection system using deep learning, plant diseases classification using AlexNet, dealing with hyperspectral images using deep learning, chest x-ray image classification of pneumonia disease using efficient net and inceptionv3.The book also addresses the difficulty of implementing deep learning in terms of computation time and the complexity of reasoning and modelling different types of data where information is currently encoded. Each chapter has the application of various new or existing deep learning models such as Deep Neural Network (DNN) and Deep Convolutional Neural Networks (DCNN). The detailed utilization of deep learning packages that are available in MATLAB, Python and R programming environments have also been discussed, therefore, the readers will get to know about the practical implementation of deep learning as well. The content of this book is presented in a simple and lucid style for professionals, nonprofessionals, scientists, and students interested in the research area of deep learning applications in image analysis. Nº de ref. del artículo: 9789819937868

Contactar al vendedor

Comprar nuevo

EUR 270,70
Convertir moneda
Gastos de envío: EUR 11,99
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito