Artículos relacionados a Deep Learning-Based Detection of Catenary Support Component...

Deep Learning-Based Detection of Catenary Support Component Defect and Fault in High-Speed Railways (Advances in High-speed Rail Technology) - Tapa dura

 
9789819909520: Deep Learning-Based Detection of Catenary Support Component Defect and Fault in High-Speed Railways (Advances in High-speed Rail Technology)

Sinopsis

This book focuses on the deep learning technologies and their applications in the catenary detection of high-speed railways. As the only source of power for high-speed trains, the catenary's service performance directly affects the safe operation of high-speed railways. This book systematically shows the latest research results of catenary detection in high-speed railways, especially the detection of catenary support component defect and fault. Some methods or algorithms have been adopted in practical engineering. These methods or algorithms provide important references and help the researcher, scholar, and engineer on pantograph and catenary technology in high-speed railways. Unlike traditional detection methods of catenary support component based on image processing, some advanced methods in the deep learning field, including convolutional neural network, reinforcement learning, generative adversarial network, etc., are adopted and improved in this book. The main contents include the overview of catenary detection of electrified railways, the introduction of some advance of deep learning theories, catenary support components and their characteristics in high-speed railways, the image reprocessing of catenary support components, the positioning of catenary support components, the detection of defect and fault, the detection based on 3D point cloud, etc.

"Sinopsis" puede pertenecer a otra edición de este libro.

Acerca del autor

Zhigang Liu (IEEE Fellow, IET Fellow, AAIA Fellow) received the Ph.D. degree in Power system and its Automation from Southwest Jiaotong University, China in 2003. He is currently a Full Professor of the School of Electrical Engineering, Southwest Jiaotong University, Chengdu. He is also a Guest Professor of Tongji University. Shanghai. He has authored three books and published more than 200 peer-reviewed journal and conference articles. His research interests include the electrical relationship of EMUs and traction, detection, and assessment of pantograph-catenary in high-speed railway. Dr. Liu is an Associate Editor-in-Chief of IEEE Transactions on Instrumentation and Measurement, Associate Editor of IEEE Transactions on Neural Networks and Learning Systems, IEEE Transactions on Intelligent Transportation Systems, IEEE Transactions on Vehicular Technology and IEEE Access. He received the IEEE TIM's Outstanding Associate Editors for 2019, 2020 and 2021, and the Outstanding Reviewer of IEEE Transactions on Instrumentation and Measurement in 2018. 
Wenqiang Liu (IEEE Member) received his Ph.D. degree in electrical engineering from the School of Electrical Engineering, Southwest Jiaotong University, Chengdu, China, in 2021. From 2017 to 2019, he was a joint Ph.D. in the Department of Engineering Structures, Delft University of Technology, Delft, the Netherlands. He is currently a postdoc researcher in the Department of National Rail Transit Electrification and Automation Engineering Technology Research Center, the Hong Kong Polytechnic University, Hong Kong, China. His research interests include artificial intelligence, computer vision, imaging, signal processing, and their applications in fault diagnosis and maintenance of railway infrastructures. Dr. Liu is an associate editor of IEEE Transactions on Instrumentation and Measurement (IEEE TIM). He received the IEEE TIM's Outstanding Editor in 2022 and the Outstanding Reviewer in 2021.  

Junping Zhong (IEEE Member) received his Ph.D. degree in electrical engineering from Southwest Jiaotong University, Chengdu, China, in 2022. From Oct 2019 to Oct 2020, he is a Ph.D student visitor in the Department of Railway Engineering, Delft University of Technology, Netherlands. From Feb 2023, he is a Postdoctoral Fellow in the Department of Industrial and Systems Engineering, Hong Kong Polytechnic University. His research interests include image processing, signal processing, and their applications in railway infrastructure fault detection. He has published 11 SCI/EI journal papers and 4 conference papers. He severs as a reviewer for IEEE TITS, IEEE TIM, and Applied Soft Computing. He was selected as the Outstanding Reviewer of IEEE Transactions on Instrumentation and Measurement in 2021.

De la contraportada

This book focuses on the deep learning technologies and their applications in the catenary detection of high-speed railways. As the only source of power for high-speed trains, the catenary's service performance directly affects the safe operation of high-speed railways. This book systematically shows the latest research results of catenary detection in high-speed railways, especially the detection of catenary support component defect and fault. Some methods or algorithms have been adopted in practical engineering. These methods or algorithms provide important references and help the researcher, scholar, and engineer on pantograph and catenary technology in high-speed railways. Unlike traditional detection methods of catenary support component based on image processing, some advanced methods in the deep learning field, including convolutional neural network, reinforcement learning, generative adversarial network, etc., are adopted and improved in this book. The main contents include the overview of catenary detection of electrified railways, the introduction of some advance of deep learning theories, catenary support components and their characteristics in high-speed railways, the image reprocessing of catenary support components, the positioning of catenary support components, the detection of defect and fault, the detection based on 3D point cloud, etc.

"Sobre este título" puede pertenecer a otra edición de este libro.

  • EditorialSpringer-Verlag GmbH
  • Año de publicación2023
  • ISBN 10 981990952X
  • ISBN 13 9789819909520
  • EncuadernaciónTapa dura
  • IdiomaInglés
  • Número de páginas256
  • Contacto del fabricanteno disponible

Comprar usado

Zustand: Hervorragend | Seiten:...
Ver este artículo

GRATIS gastos de envío desde Alemania a España

Destinos, gastos y plazos de envío

Comprar nuevo

Ver este artículo

EUR 19,49 gastos de envío desde Alemania a España

Destinos, gastos y plazos de envío

Otras ediciones populares con el mismo título

9789819909551: Deep Learning-Based Detection of Catenary Support Component Defect and Fault in High-Speed Railways (Advances in High-speed Rail Technology)

Edición Destacada

ISBN 10:  9819909554 ISBN 13:  9789819909551
Editorial: Springer-Verlag GmbH, 2024
Tapa blanda

Resultados de la búsqueda para Deep Learning-Based Detection of Catenary Support Component...

Imagen de archivo

Zhigang Liu, Junping Zhong, Wenqiang Liu
Publicado por Springer Nature Singapore, 2023
ISBN 10: 981990952X ISBN 13: 9789819909520
Antiguo o usado Tapa dura

Librería: Buchpark, Trebbin, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: Hervorragend. Zustand: Hervorragend | Seiten: 256 | Sprache: Englisch | Produktart: Bücher. Nº de ref. del artículo: 41461739/1

Contactar al vendedor

Comprar usado

EUR 109,40
Convertir moneda
Gastos de envío: GRATIS
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen del vendedor

Liu, Zhigang|Liu, Wenqiang|Zhong, Junping
ISBN 10: 981990952X ISBN 13: 9789819909520
Nuevo Tapa dura
Impresión bajo demanda

Librería: moluna, Greven, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. This book focuses on the deep learning technologies and their applications in the catenary detection of high-speed railways. As the only source of power for high-speed trains, the catenary s service performance directly affects the safe operation of high. Nº de ref. del artículo: 812312220

Contactar al vendedor

Comprar nuevo

EUR 146,12
Convertir moneda
Gastos de envío: EUR 19,49
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

Zhigang Liu
ISBN 10: 981990952X ISBN 13: 9789819909520
Nuevo Tapa dura
Impresión bajo demanda

Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Buch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book focuses on the deep learning technologies and their applications in the catenary detection of high-speed railways. As the only source of power for high-speed trains, the catenary's service performance directly affects the safe operation of high-speed railways. This book systematically shows the latest research results of catenary detection in high-speed railways, especially the detection of catenary support component defect and fault. Some methods or algorithms have been adopted in practical engineering. These methods or algorithms provide important references and help the researcher, scholar, and engineer on pantograph and catenary technology in high-speed railways. Unlike traditional detection methods of catenary support component based on image processing, some advanced methods in the deep learning field, including convolutional neural network, reinforcement learning, generative adversarial network, etc., are adopted and improved in this book. The main contents include the overview of catenary detection of electrified railways, the introduction of some advance of deep learning theories, catenary support components and their characteristics in high-speed railways, the image reprocessing of catenary support components, the positioning of catenary support components, the detection of defect and fault, the detection based on 3D point cloud, etc. 256 pp. Englisch. Nº de ref. del artículo: 9789819909520

Contactar al vendedor

Comprar nuevo

EUR 171,19
Convertir moneda
Gastos de envío: EUR 11,00
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen del vendedor

Zhigang Liu
ISBN 10: 981990952X ISBN 13: 9789819909520
Nuevo Tapa dura

Librería: AHA-BUCH GmbH, Einbeck, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Buch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book focuses on the deep learning technologies and their applications in the catenary detection of high-speed railways. As the only source of power for high-speed trains, the catenary's service performance directly affects the safe operation of high-speed railways. This book systematically shows the latest research results of catenary detection in high-speed railways, especially the detection of catenary support component defect and fault. Some methods or algorithms have been adopted in practical engineering. These methods or algorithms provide important references and help the researcher, scholar, and engineer on pantograph and catenary technology in high-speed railways. Unlike traditional detection methods of catenary support component based on image processing, some advanced methods in the deep learning field, including convolutional neural network, reinforcement learning, generative adversarial network, etc., are adopted and improved in this book. The main contents include the overview of catenary detection of electrified railways, the introduction of some advance of deep learning theories, catenary support components and their characteristics in high-speed railways, the image reprocessing of catenary support components, the positioning of catenary support components, the detection of defect and fault, the detection based on 3D point cloud, etc. Nº de ref. del artículo: 9789819909520

Contactar al vendedor

Comprar nuevo

EUR 175,09
Convertir moneda
Gastos de envío: EUR 11,99
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

Liu, Zhigang; Liu, Wenqiang; Zhong, Junping
Publicado por Springer, 2023
ISBN 10: 981990952X ISBN 13: 9789819909520
Nuevo Tapa dura

Librería: California Books, Miami, FL, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: I-9789819909520

Contactar al vendedor

Comprar nuevo

EUR 194,46
Convertir moneda
Gastos de envío: EUR 7,09
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: 5 disponibles

Añadir al carrito

Imagen de archivo

Liu, Zhigang/ Liu, Wenqiang/ Zhong, Junping
Publicado por Springer Nature, 2023
ISBN 10: 981990952X ISBN 13: 9789819909520
Nuevo Tapa dura

Librería: Revaluation Books, Exeter, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Hardcover. Condición: Brand New. 252 pages. 9.25x6.10x0.71 inches. In Stock. Nº de ref. del artículo: x-981990952X

Contactar al vendedor

Comprar nuevo

EUR 255,18
Convertir moneda
Gastos de envío: EUR 11,89
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen de archivo

Zhigang Liu
ISBN 10: 981990952X ISBN 13: 9789819909520
Nuevo Tapa dura

Librería: Grand Eagle Retail, Fairfield, OH, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Hardcover. Condición: new. Hardcover. This book focuses on the deep learning technologies and their applications in the catenary detection of high-speed railways. As the only source of power for high-speed trains, the catenary's service performance directly affects the safe operation of high-speed railways. This book systematically shows the latest research results of catenary detection in high-speed railways, especially the detection of catenary support component defect and fault. Some methods or algorithms have been adopted in practical engineering. These methods or algorithms provide important references and help the researcher, scholar, and engineer on pantograph and catenary technology in high-speed railways. Unlike traditional detection methods of catenary support component based on image processing, some advanced methods in the deep learning field, including convolutional neural network, reinforcement learning, generative adversarial network, etc., are adopted and improved in this book. The main contents include the overview of catenary detection of electrified railways, the introduction of some advance of deep learning theories, catenary support components and their characteristics in high-speed railways, the image reprocessing of catenary support components, the positioning of catenary support components, the detection of defect and fault, the detection based on 3D point cloud, etc. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Nº de ref. del artículo: 9789819909520

Contactar al vendedor

Comprar nuevo

EUR 205,96
Convertir moneda
Gastos de envío: EUR 66,48
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito