Artículos relacionados a Graph Neural Network Methods and Applications in Scene...

Graph Neural Network Methods and Applications in Scene Understanding - Tapa dura

 
9789819799329: Graph Neural Network Methods and Applications in Scene Understanding

Sinopsis

The book focuses on graph neural network methods and applications for scene understanding. Graph Neural Network is an important method for graph-structured data processing, which has strong capability of graph data learning and structural feature extraction. Scene understanding is one of the research focuses in computer vision and image processing, which realizes semantic segmentation and object recognition of image or video. In this book, the algorithm, system design and performance evaluation of scene understanding based on graph neural networks have been studied. First, the book elaborates the background and basic concepts of graph neural network and scene understanding, then introduces the operation mechanism and key methodological foundations of graph neural network. The book then comprehensively explores the implementation and architectural design of graph neural networks for scene understanding tasks, including scene parsing, human parsing, and video object segmentation. The aim of this book is to provide timely coverage of the latest advances and developments in graph neural networks and their applications to scene understanding, particularly for readers interested in research and technological innovation in machine learning, graph neural networks and computer vision. Features of the book include self-supervised feature fusion based graph convolutional network is designed for scene parsing, structure-property based graph representation learning is developed for human parsing, dynamic graph convolutional network based on multi-label learning is designed for human parsing, and graph construction and graph neural network with transformer are proposed for video object segmentation.

"Sinopsis" puede pertenecer a otra edición de este libro.

Acerca del autor

Weibin Liu received the Ph.D. degree in Signal and Information Processing from Institute of Information Science at Beijing Jiaotong University, China, in 2001. During 2001-2005, he was a researcher in Information Technology Division at Fujitsu Research and Development Center Co., LTD. Since 2005, he has been with the Institute of Information Science, School of Computer Science and Technology at Beijing Jiaotong University, where currently he is a professor in Digital Media Research Group. He was also a visiting researcher in Center for Human Modeling and Simulation at University of Pennsylvania, PA, USA during 2009-2010. His research interests include computer vision, video and image processing, deep learning, computer graphics, virtual human and virtual environment, and pattern recognition.

 

Huaqing Hao received the B.S. and M.S. degree in Electronic Information Engineering from Heibei University, China, in 2015 and 2018, respectively. She received the Ph.D degree in Signal and Information Processing from Institute of Information Science at Beijing Jiaotong University, China, in 2024. Currently, she is an associate professor at College of Electronic Information Engineering, Hebei University. Her main research interests include computer vision, pattern recognition and deep learning, in particular focusing on human parsing.

 

Hui Wang received the B.S. degree in Electronic Information Engineering from Hebei University, China, in 2016. He received the Ph.D degree in Signal and Information Processing from Institute of Information Science at Beijing Jiaotong University, China, in 2023. Currently, he is an associate professor at College of Electronic Information Engineering, Hebei University. His research interests include computer vision, image processing, video object segmentation.

 

Zhiyuan Zou received the B.S. degree in Software Engineering from Beijing Jiaotong University, Beijing, China, in 2015, and Ph.D. degree in Software Engineering from Institute of Information Science, Beijing Jiaotong University, in 2022. Currently, he is an associate professor at Computer School, Beijing Information Science and Technology University. His research interests include scene understanding, deep learning, computer vision, and pattern recognition.

 

Weiwei Xing received the B.S. degree in Computer Science and Technology and the Ph.D. degree in Signal and Information Processing from Beijing Jiaotong University, Beijing, China, in 2001 and 2006, respectively. She was a visiting scholar at University of Pennsylvania, PA, USA during 2011-2012. She is currently a professor at School of Software Engineering, Beijing Jiaotong University and leads the research group on Intelligent Computing and Big Data. Her research interests include computer vision, intelligent perception and applications.

 

De la contraportada

The book focuses on graph neural network methods and applications for scene understanding. Graph Neural Network is an important method for graph-structured data processing, which has strong capability of graph data learning and structural feature extraction. Scene understanding is one of the research focuses in computer vision and image processing, which realizes semantic segmentation and object recognition of image or video. In this book, the algorithm, system design and performance evaluation of scene understanding based on graph neural networks have been studied. First, the book elaborates the background and basic concepts of graph neural network and scene understanding, then introduces the operation mechanism and key methodological foundations of graph neural network. The book then comprehensively explores the implementation and architectural design of graph neural networks for scene understanding tasks, including scene parsing, human parsing, and video object segmentation. The aim of this book is to provide timely coverage of the latest advances and developments in graph neural networks and their applications to scene understanding, particularly for readers interested in research and technological innovation in machine learning, graph neural networks and computer vision. Features of the book include self-supervised feature fusion based graph convolutional network is designed for scene parsing, structure-property based graph representation learning is developed for human parsing, dynamic graph convolutional network based on multi-label learning is designed for human parsing, and graph construction and graph neural network with transformer are proposed for video object segmentation.

"Sobre este título" puede pertenecer a otra edición de este libro.

Comprar usado

Condición: Como Nuevo
Unread book in perfect condition...
Ver este artículo

EUR 17,19 gastos de envío desde Estados Unidos de America a España

Destinos, gastos y plazos de envío

Comprar nuevo

Ver este artículo

EUR 19,49 gastos de envío desde Alemania a España

Destinos, gastos y plazos de envío

Resultados de la búsqueda para Graph Neural Network Methods and Applications in Scene...

Imagen del vendedor

Liu, Weibin; Hao, Huaqing; Wang, Hui; Zou, Zhiyuan; Xing, Weiwei
Publicado por Springer Verlag GmbH, 2025
ISBN 10: 9819799325 ISBN 13: 9789819799329
Nuevo Tapa dura
Impresión bajo demanda

Librería: moluna, Greven, Alemania

Calificación del vendedor: 4 de 5 estrellas Valoración 4 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Nº de ref. del artículo: 1887558019

Contactar al vendedor

Comprar nuevo

EUR 153,73
Convertir moneda
Gastos de envío: EUR 19,49
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Liu, Weibin; Hao, Huaqing; Wang, Hui; Zou, Zhiyuan; Xing, Weiwei
Publicado por Springer, 2025
ISBN 10: 9819799325 ISBN 13: 9789819799329
Nuevo Tapa dura

Librería: Ria Christie Collections, Uxbridge, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. In. Nº de ref. del artículo: ria9789819799329_new

Contactar al vendedor

Comprar nuevo

EUR 182,93
Convertir moneda
Gastos de envío: EUR 5,17
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

Weibin Liu
ISBN 10: 9819799325 ISBN 13: 9789819799329
Nuevo Tapa dura
Impresión bajo demanda

Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Buch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The book focuses on graph neural network methods and applications for scene understanding. Graph Neural Network is an important method for graph-structured data processing, which has strong capability of graph data learning and structural feature extraction. Scene understanding is one of the research focuses in computer vision and image processing, which realizes semantic segmentation and object recognition of image or video. In this book, the algorithm, system design and performance evaluation of scene understanding based on graph neural networks have been studied. First, the book elaborates the background and basic concepts of graph neural network and scene understanding, then introduces the operation mechanism and key methodological foundations of graph neural network. The book then comprehensively explores the implementation and architectural design of graph neural networks for scene understanding tasks, including scene parsing, human parsing, and video object segmentation. The aim of this book is to provide timely coverage of the latest advances and developments in graph neural networks and their applications to scene understanding, particularly for readers interested in research and technological innovation in machine learning, graph neural networks and computer vision. Features of the book include self-supervised feature fusion based graph convolutional network is designed for scene parsing, structure-property based graph representation learning is developed for human parsing, dynamic graph convolutional network based on multi-label learning is designed for human parsing, and graph construction and graph neural network with transformer are proposed for video object segmentation. 219 pp. Englisch. Nº de ref. del artículo: 9789819799329

Contactar al vendedor

Comprar nuevo

EUR 181,89
Convertir moneda
Gastos de envío: EUR 11,00
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen del vendedor

Weibin Liu
ISBN 10: 9819799325 ISBN 13: 9789819799329
Nuevo Tapa dura

Librería: AHA-BUCH GmbH, Einbeck, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Buch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - The book focuses on graph neural network methods and applications for scene understanding. Graph Neural Network is an important method for graph-structured data processing, which has strong capability of graph data learning and structural feature extraction. Scene understanding is one of the research focuses in computer vision and image processing, which realizes semantic segmentation and object recognition of image or video. In this book, the algorithm, system design and performance evaluation of scene understanding based on graph neural networks have been studied. First, the book elaborates the background and basic concepts of graph neural network and scene understanding, then introduces the operation mechanism and key methodological foundations of graph neural network. The book then comprehensively explores the implementation and architectural design of graph neural networks for scene understanding tasks, including scene parsing, human parsing, and video object segmentation. The aim of this book is to provide timely coverage of the latest advances and developments in graph neural networks and their applications to scene understanding, particularly for readers interested in research and technological innovation in machine learning, graph neural networks and computer vision. Features of the book include self-supervised feature fusion based graph convolutional network is designed for scene parsing, structure-property based graph representation learning is developed for human parsing, dynamic graph convolutional network based on multi-label learning is designed for human parsing, and graph construction and graph neural network with transformer are proposed for video object segmentation. Nº de ref. del artículo: 9789819799329

Contactar al vendedor

Comprar nuevo

EUR 188,08
Convertir moneda
Gastos de envío: EUR 11,99
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

Liu, Weibin; Hao, Huaqing; Wang, Hui; Zou, Zhiyuan; Xing, Weiwei
Publicado por Springer, 2025
ISBN 10: 9819799325 ISBN 13: 9789819799329
Nuevo Tapa dura

Librería: California Books, Miami, FL, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: I-9789819799329

Contactar al vendedor

Comprar nuevo

EUR 209,90
Convertir moneda
Gastos de envío: EUR 6,88
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

Weibin Liu
ISBN 10: 9819799325 ISBN 13: 9789819799329
Nuevo Tapa dura

Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Buch. Condición: Neu. Neuware -The book focuses on graph neural network methods and applications for scene understanding. Graph Neural Network is an important method for graph-structured data processing, which has strong capability of graph data learning and structural feature extraction. Scene understanding is one of the research focuses in computer vision and image processing, which realizes semantic segmentation and object recognition of image or video. In this book, the algorithm, system design and performance evaluation of scene understanding based on graph neural networks have been studied. First, the book elaborates the background and basic concepts of graph neural network and scene understanding, then introduces the operation mechanism and key methodological foundations of graph neural network. The book then comprehensively explores the implementation and architectural design of graph neural networks for scene understanding tasks, including scene parsing, human parsing, and video object segmentation. The aim of this book is to provide timely coverage of the latest advances and developments in graph neural networks and their applications to scene understanding, particularly for readers interested in research and technological innovation in machine learning, graph neural networks and computer vision. Features of the book include self-supervised feature fusion based graph convolutional network is designed for scene parsing, structure-property based graph representation learning is developed for human parsing, dynamic graph convolutional network based on multi-label learning is designed for human parsing, and graph construction and graph neural network with transformer are proposed for video object segmentation.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 236 pp. Englisch. Nº de ref. del artículo: 9789819799329

Contactar al vendedor

Comprar nuevo

EUR 181,89
Convertir moneda
Gastos de envío: EUR 35,00
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen de archivo

Liu, Weibin; Hao, Huaqing; Wang, Hui; Zou, Zhiyuan; Xing, Weiwei
Publicado por Springer, 2025
ISBN 10: 9819799325 ISBN 13: 9789819799329
Nuevo Tapa dura

Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: 49526716-n

Contactar al vendedor

Comprar nuevo

EUR 200,58
Convertir moneda
Gastos de envío: EUR 17,19
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: 15 disponibles

Añadir al carrito

Imagen de archivo

Weibin Liu
Publicado por Springer Verlag, Singapore, 2025
ISBN 10: 9819799325 ISBN 13: 9789819799329
Nuevo Tapa dura

Librería: CitiRetail, Stevenage, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Hardcover. Condición: new. Hardcover. The book focuses on graph neural network methods and applications for scene understanding. Graph Neural Network is an important method for graph-structured data processing, which has strong capability of graph data learning and structural feature extraction. Scene understanding is one of the research focuses in computer vision and image processing, which realizes semantic segmentation and object recognition of image or video. In this book, the algorithm, system design and performance evaluation of scene understanding based on graph neural networks have been studied. First, the book elaborates the background and basic concepts of graph neural network and scene understanding, then introduces the operation mechanism and key methodological foundations of graph neural network. The book then comprehensively explores the implementation and architectural design of graph neural networks for scene understanding tasks, including scene parsing, human parsing, and video object segmentation. The aim of this book is to provide timely coverage of the latest advances and developments in graph neural networks and their applications to scene understanding, particularly for readers interested in research and technological innovation in machine learning, graph neural networks and computer vision. Features of the book include self-supervised feature fusion based graph convolutional network is designed for scene parsing, structure-property based graph representation learning is developed for human parsing, dynamic graph convolutional network based on multi-label learning is designed for human parsing, and graph construction and graph neural network with transformer are proposed for video object segmentation. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. Nº de ref. del artículo: 9789819799329

Contactar al vendedor

Comprar nuevo

EUR 199,39
Convertir moneda
Gastos de envío: EUR 34,57
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

Liu, Weibin; Hao, Huaqing; Wang, Hui; Zou, Zhiyuan; Xing, Weiwei
Publicado por Springer, 2025
ISBN 10: 9819799325 ISBN 13: 9789819799329
Antiguo o usado Tapa dura

Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 49526716

Contactar al vendedor

Comprar usado

EUR 220,69
Convertir moneda
Gastos de envío: EUR 17,19
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: 15 disponibles

Añadir al carrito

Imagen de archivo

Liu, Weibin; Hao, Huaqing; Wang, Hui; Zou, Zhiyuan; Xing, Weiwei
Publicado por Springer, 2025
ISBN 10: 9819799325 ISBN 13: 9789819799329
Nuevo Tapa dura

Librería: Books Puddle, New York, NY, Estados Unidos de America

Calificación del vendedor: 4 de 5 estrellas Valoración 4 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: 26403527077

Contactar al vendedor

Comprar nuevo

EUR 236,89
Convertir moneda
Gastos de envío: EUR 9,89
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: 4 disponibles

Añadir al carrito

Existen otras 6 copia(s) de este libro

Ver todos los resultados de su búsqueda