This book investigates the critical gain design in stochastic iterative learning control (SILC), including four specific gain design strategies: decreasing gain design, adaptive gain design, event-triggering gain design, and optimal gain design. The key concept for the gain design is to balance multiple performance indices such as high tracking precision, effective noise reduction, and fast convergence speed. These gain design techniques can be applied to various control algorithms for stochastic systems to realize a high tracking performance. This book provides a series of design and analysis techniques for the establishment of a systematic framework of gain design in SILC. The book is intended for scholars and graduate students who are interested in stochastic control, recursive algorithms design, and iterative learning control.
"Sinopsis" puede pertenecer a otra edición de este libro.
Dong Shen received the B.S. degree in mathematics from the School of Mathematics, Shandong University, Jinan, China, in 2005, and the Ph.D. degree in mathematics from the Academy of Mathematics and Systems Science, Chinese Academy of Sciences (CAS), Beijing, China, in 2010. From 2010 to 2012, he was a postdoctoral fellow with the Institute of Automation, CAS. From 2012 to 2019, he was with the College of Information Science and Technology, Beijing University of Chemical Technology, Beijing. In 2016 and 2019, he was a visiting scholar with the National University of Singapore, Singapore, and RMIT University, Melbourne, VIC, Australia, respectively. Since 2020, he has been a professor at the School of Mathematics, Renmin University of China, Beijing. His research interests include iterative learning control, stochastic optimization, stochastic systems, and distributed artificial intelligence.
This book investigates the critical gain design in stochastic iterative learning control (SILC), including four specific gain design strategies: decreasing gain design, adaptive gain design, event-triggering gain design, and optimal gain design. The key concept for the gain design is to balance multiple performance indices such as high tracking precision, effective noise reduction, and fast convergence speed. These gain design techniques can be applied to various control algorithms for stochastic systems to realize a high tracking performance. This book provides a series of design and analysis techniques for the establishment of a systematic framework of gain design in SILC. The book is intended for scholars and graduate students who are interested in stochastic control, recursive algorithms design, and iterative learning control.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 19,49 gastos de envío desde Alemania a España
Destinos, gastos y plazos de envíoLibrería: moluna, Greven, Alemania
Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Nº de ref. del artículo: 1817951393
Cantidad disponible: Más de 20 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9789819782802_new
Cantidad disponible: Más de 20 disponibles
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Buch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book investigates the critical gain design in stochastic iterative learning control (SILC), including four specific gain design strategies: decreasing gain design, adaptive gain design, event-triggering gain design, and optimal gain design. The key concept for the gain design is to balance multiple performance indices such as high tracking precision, effective noise reduction, and fast convergence speed. These gain design techniques can be applied to various control algorithms for stochastic systems to realize a high tracking performance. This book provides a series of design and analysis techniques for the establishment of a systematic framework of gain design in SILC. The book is intended for scholars and graduate students who are interested in stochastic control, recursive algorithms design, and iterative learning control. 348 pp. Englisch. Nº de ref. del artículo: 9789819782802
Cantidad disponible: 2 disponibles
Librería: AussieBookSeller, Truganina, VIC, Australia
Hardcover. Condición: new. Hardcover. This book investigates the critical gain design in stochastic iterative learning control (SILC), including four specific gain design strategies: decreasing gain design, adaptive gain design, event-triggering gain design, and optimal gain design. The key concept for the gain design is to balance multiple performance indices such as high tracking precision, effective noise reduction, and fast convergence speed. These gain design techniques can be applied to various control algorithms for stochastic systems to realize a high tracking performance. This book provides a series of design and analysis techniques for the establishment of a systematic framework of gain design in SILC. The book is intended for scholars and graduate students who are interested in stochastic control, recursive algorithms design, and iterative learning control. This book investigates the critical gain design in stochastic iterative learning control (SILC), including four specific gain design strategies: decreasing gain design, adaptive gain design, event-triggering gain design, and optimal gain design. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability. Nº de ref. del artículo: 9789819782802
Cantidad disponible: 1 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Buch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book investigates the critical gain design in stochastic iterative learning control (SILC), including four specific gain design strategies: decreasing gain design, adaptive gain design, event-triggering gain design, and optimal gain design. The key concept for the gain design is to balance multiple performance indices such as high tracking precision, effective noise reduction, and fast convergence speed. These gain design techniques can be applied to various control algorithms for stochastic systems to realize a high tracking performance. This book provides a series of design and analysis techniques for the establishment of a systematic framework of gain design in SILC. The book is intended for scholars and graduate students who are interested in stochastic control, recursive algorithms design, and iterative learning control. Nº de ref. del artículo: 9789819782802
Cantidad disponible: 1 disponibles
Librería: California Books, Miami, FL, Estados Unidos de America
Condición: New. Nº de ref. del artículo: I-9789819782802
Cantidad disponible: Más de 20 disponibles
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
Buch. Condición: Neu. Neuware -This book investigates the critical gain design in stochastic iterative learning control (SILC), including four specific gain design strategies: decreasing gain design, adaptive gain design, event-triggering gain design, and optimal gain design. The key concept for the gain design is to balance multiple performance indices such as high tracking precision, effective noise reduction, and fast convergence speed. These gain design techniques can be applied to various control algorithms for stochastic systems to realize a high tracking performance. This book provides a series of design and analysis techniques for the establishment of a systematic framework of gain design in SILC. The book is intended for scholars and graduate students who are interested in stochastic control, recursive algorithms design, and iterative learning control.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 364 pp. Englisch. Nº de ref. del artículo: 9789819782802
Cantidad disponible: 2 disponibles
Librería: CitiRetail, Stevenage, Reino Unido
Hardcover. Condición: new. Hardcover. This book investigates the critical gain design in stochastic iterative learning control (SILC), including four specific gain design strategies: decreasing gain design, adaptive gain design, event-triggering gain design, and optimal gain design. The key concept for the gain design is to balance multiple performance indices such as high tracking precision, effective noise reduction, and fast convergence speed. These gain design techniques can be applied to various control algorithms for stochastic systems to realize a high tracking performance. This book provides a series of design and analysis techniques for the establishment of a systematic framework of gain design in SILC. The book is intended for scholars and graduate students who are interested in stochastic control, recursive algorithms design, and iterative learning control. This book investigates the critical gain design in stochastic iterative learning control (SILC), including four specific gain design strategies: decreasing gain design, adaptive gain design, event-triggering gain design, and optimal gain design. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. Nº de ref. del artículo: 9789819782802
Cantidad disponible: 1 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. 2024th edition NO-PA16APR2015-KAP. Nº de ref. del artículo: 26404307087
Cantidad disponible: 4 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: New. Print on Demand. Nº de ref. del artículo: 409895760
Cantidad disponible: 4 disponibles