Artículos relacionados a Derivative-Free Optimization: Theoretical Foundations,...

Derivative-Free Optimization: Theoretical Foundations, Algorithms, and Applications (Machine Learning: Foundations, Methodologies, and Applications) - Tapa dura

 
9789819659289: Derivative-Free Optimization: Theoretical Foundations, Algorithms, and Applications (Machine Learning: Foundations, Methodologies, and Applications)

Sinopsis

mso-fareast-font-family: 'Times New Roman';">Readers will benefit from a comprehensive yet concise presentation of modern DFO methods, gaining theoretical insights and practical tools to enhance their research and problem-solving capabilities.

"Sinopsis" puede pertenecer a otra edición de este libro.

Acerca del autor

Yang Yu is a professor at Nanjing University, specializing in artificial intelligence, machine learning, and optimization. His research focuses on derivative-free optimization, AutoML, and reinforcement learning. Prof. Yu has an extensive publication record in leading journals and conferences, including Artificial Intelligence, IEEE Transactions on Pattern Analysis and Machine Intelligence, ICML, NeurIPS, IJCAI, and AAAI. He is a co-author of the book Evolutionary Learning: Advances in Theories and Algorithms (Springer, 2019). His work has introduced foundational frameworks and algorithms in classification-based optimization, notably Racos and SRacos, and contributed to the development of the optimization toolbox ZOOpt, widely utilized in academic and industrial research.

Hong Qian is an associate professor at East China Normal University, with expertise in optimization algorithms, machine learning, and computational intelligence. His research focuses on developing scalable derivative-free optimization techniques for high-dimensional problems with theoretical guarantees, and LLM for optimization. Dr. Qian has published extensively in prominent venues such as ICML, NeurIPS, AAAI, and IEEE Transactions on Evolutionary Computation and has contributed to advancements in sampling-and-classification frameworks and their applications in machine learning and optimization tasks.

Yi-Qi Hu is an AI technical expert in Huawei Co. Ltd., with expertise in machine learning, optimization algorithms, and large language model on device. His work focuses on developing machine learning systems utilizing derivative-free optimization techniques. Dr. Hu has published extensively in prominent venues such as AAAI and IJCAI and has contributed to advancements in derivative-free optimization-based AutoML systems.

De la contraportada

This book offers a pioneering exploration of classification-based derivative-free optimization (DFO), providing researchers and professionals in artificial intelligence, machine learning, AutoML, and optimization with a robust framework for addressing complex, large-scale problems where gradients are unavailable. By bridging theoretical foundations with practical implementations, it fills critical gaps in the field, making it an indispensable resource for both academic and industrial audiences.

The book introduces innovative frameworks such as sampling-and-classification (SAC) and sampling-and-learning (SAL), which underpin cutting-edge algorithms like Racos and SRacos. These methods are designed to excel in challenging optimization scenarios, including high-dimensional search spaces, noisy environments, and parallel computing. A dedicated section on the ZOOpt toolbox provides practical tools for implementing these algorithms effectively. The book’s structure moves from foundational principles and algorithmic development to advanced topics and real-world applications, such as hyperparameter tuning, neural architecture search, and algorithm selection in AutoML.

Readers will benefit from a comprehensive yet concise presentation of modern DFO methods, gaining theoretical insights and practical tools to enhance their research and problem-solving capabilities. A foundational understanding of machine learning, probability theory, and algorithms is recommended for readers to fully engage with the material.

"Sobre este título" puede pertenecer a otra edición de este libro.

Comprar nuevo

Ver este artículo

EUR 40,00 gastos de envío desde Italia a España

Destinos, gastos y plazos de envío

Resultados de la búsqueda para Derivative-Free Optimization: Theoretical Foundations,...

Imagen de archivo

Yu, Yang
Publicado por Springer, 2025
ISBN 10: 9819659280 ISBN 13: 9789819659289
Nuevo Tapa dura
Impresión bajo demanda

Librería: Brook Bookstore On Demand, Napoli, NA, Italia

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: new. Questo è un articolo print on demand. Nº de ref. del artículo: OWS5EKFRF4

Contactar al vendedor

Comprar nuevo

EUR 126,26
Convertir moneda
Gastos de envío: EUR 40,00
De Italia a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

Yang Yu
ISBN 10: 9819659280 ISBN 13: 9789819659289
Nuevo Tapa dura
Impresión bajo demanda

Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Buch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book offers a pioneering exploration of classification-based derivative-free optimization (DFO), providing researchers and professionals in artificial intelligence, machine learning, AutoML, and optimization with a robust framework for addressing complex, large-scale problems where gradients are unavailable. By bridging theoretical foundations with practical implementations, it fills critical gaps in the field, making it an indispensable resource for both academic and industrial audiences.The book introduces innovative frameworks such as sampling-and-classification (SAC) and sampling-and-learning (SAL), which underpin cutting-edge algorithms like Racos and SRacos. These methods are designed to excel in challenging optimization scenarios, including high-dimensional search spaces, noisy environments, and parallel computing. A dedicated section on the ZOOpt toolbox provides practical tools for implementing these algorithms effectively. The book s structure moves from foundational principles and algorithmic development to advanced topics and real-world applications, such as hyperparameter tuning, neural architecture search, and algorithm selection in AutoML.Readers will benefit from a comprehensive yet concise presentation of modern DFO methods, gaining theoretical insights and practical tools to enhance their research and problem-solving capabilities. A foundational understanding of machine learning, probability theory, and algorithms is recommended for readers to fully engage with the material. 212 pp. Englisch. Nº de ref. del artículo: 9789819659289

Contactar al vendedor

Comprar nuevo

EUR 160,49
Convertir moneda
Gastos de envío: EUR 11,00
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen de archivo

Yu, Yang; Qian, Hong; Hu, Yi-Qi
Publicado por Springer, 2025
ISBN 10: 9819659280 ISBN 13: 9789819659289
Nuevo Tapa dura

Librería: Best Price, Torrance, CA, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. SUPER FAST SHIPPING. Nº de ref. del artículo: 9789819659289

Contactar al vendedor

Comprar nuevo

EUR 148,47
Convertir moneda
Gastos de envío: EUR 25,59
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

Yang Yu
ISBN 10: 9819659280 ISBN 13: 9789819659289
Nuevo Tapa dura

Librería: AussieBookSeller, Truganina, VIC, Australia

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Hardcover. Condición: new. Hardcover. This book offers a pioneering exploration of classification-based derivative-free optimization (DFO), providing researchers and professionals in artificial intelligence, machine learning, AutoML, and optimization with a robust framework for addressing complex, large-scale problems where gradients are unavailable. By bridging theoretical foundations with practical implementations, it fills critical gaps in the field, making it an indispensable resource for both academic and industrial audiences.The book introduces innovative frameworks such as sampling-and-classification (SAC) and sampling-and-learning (SAL), which underpin cutting-edge algorithms like Racos and SRacos. These methods are designed to excel in challenging optimization scenarios, including high-dimensional search spaces, noisy environments, and parallel computing. A dedicated section on the ZOOpt toolbox provides practical tools for implementing these algorithms effectively. The books structure moves from foundational principles and algorithmic development to advanced topics and real-world applications, such as hyperparameter tuning, neural architecture search, and algorithm selection in AutoML.Readers will benefit from a comprehensive yet concise presentation of modern DFO methods, gaining theoretical insights and practical tools to enhance their research and problem-solving capabilities. A foundational understanding of machine learning, probability theory, and algorithms is recommended for readers to fully engage with the material. mso-fareast-font-family: 'Times New Roman';">Readers will benefit from a comprehensive yet concise presentation of modern DFO methods, gaining theoretical insights and practical tools to enhance their research and problem-solving capabilities. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability. Nº de ref. del artículo: 9789819659289

Contactar al vendedor

Comprar nuevo

EUR 143,52
Convertir moneda
Gastos de envío: EUR 31,59
De Australia a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen del vendedor

Yang Yu
ISBN 10: 9819659280 ISBN 13: 9789819659289
Nuevo Tapa dura

Librería: AHA-BUCH GmbH, Einbeck, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Buch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book offers a pioneering exploration of classification-based derivative-free optimization (DFO), providing researchers and professionals in artificial intelligence, machine learning, AutoML, and optimization with a robust framework for addressing complex, large-scale problems where gradients are unavailable. By bridging theoretical foundations with practical implementations, it fills critical gaps in the field, making it an indispensable resource for both academic and industrial audiences.The book introduces innovative frameworks such as sampling-and-classification (SAC) and sampling-and-learning (SAL), which underpin cutting-edge algorithms like Racos and SRacos. These methods are designed to excel in challenging optimization scenarios, including high-dimensional search spaces, noisy environments, and parallel computing. A dedicated section on the ZOOpt toolbox provides practical tools for implementing these algorithms effectively. The book s structure moves from foundational principles and algorithmic development to advanced topics and real-world applications, such as hyperparameter tuning, neural architecture search, and algorithm selection in AutoML.Readers will benefit from a comprehensive yet concise presentation of modern DFO methods, gaining theoretical insights and practical tools to enhance their research and problem-solving capabilities. A foundational understanding of machine learning, probability theory, and algorithms is recommended for readers to fully engage with the material. Nº de ref. del artículo: 9789819659289

Contactar al vendedor

Comprar nuevo

EUR 164,49
Convertir moneda
Gastos de envío: EUR 11,99
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

Yu, Yang; Qian, Hong; Hu, Yi-Qi
Publicado por Springer, 2025
ISBN 10: 9819659280 ISBN 13: 9789819659289
Nuevo Tapa dura

Librería: California Books, Miami, FL, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: I-9789819659289

Contactar al vendedor

Comprar nuevo

EUR 177,63
Convertir moneda
Gastos de envío: EUR 6,83
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

Yang Yu
ISBN 10: 9819659280 ISBN 13: 9789819659289
Nuevo Tapa dura
Impresión bajo demanda

Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Buch. Condición: Neu. This item is printed on demand - Print on Demand Titel. Neuware Springer-Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 212 pp. Englisch. Nº de ref. del artículo: 9789819659289

Contactar al vendedor

Comprar nuevo

EUR 160,49
Convertir moneda
Gastos de envío: EUR 35,00
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

Yang Yu
ISBN 10: 9819659280 ISBN 13: 9789819659289
Nuevo Tapa dura

Librería: CitiRetail, Stevenage, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Hardcover. Condición: new. Hardcover. This book offers a pioneering exploration of classification-based derivative-free optimization (DFO), providing researchers and professionals in artificial intelligence, machine learning, AutoML, and optimization with a robust framework for addressing complex, large-scale problems where gradients are unavailable. By bridging theoretical foundations with practical implementations, it fills critical gaps in the field, making it an indispensable resource for both academic and industrial audiences.The book introduces innovative frameworks such as sampling-and-classification (SAC) and sampling-and-learning (SAL), which underpin cutting-edge algorithms like Racos and SRacos. These methods are designed to excel in challenging optimization scenarios, including high-dimensional search spaces, noisy environments, and parallel computing. A dedicated section on the ZOOpt toolbox provides practical tools for implementing these algorithms effectively. The books structure moves from foundational principles and algorithmic development to advanced topics and real-world applications, such as hyperparameter tuning, neural architecture search, and algorithm selection in AutoML.Readers will benefit from a comprehensive yet concise presentation of modern DFO methods, gaining theoretical insights and practical tools to enhance their research and problem-solving capabilities. A foundational understanding of machine learning, probability theory, and algorithms is recommended for readers to fully engage with the material. mso-fareast-font-family: 'Times New Roman';">Readers will benefit from a comprehensive yet concise presentation of modern DFO methods, gaining theoretical insights and practical tools to enhance their research and problem-solving capabilities. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. Nº de ref. del artículo: 9789819659289

Contactar al vendedor

Comprar nuevo

EUR 173,81
Convertir moneda
Gastos de envío: EUR 34,56
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

Yu, Yang; Qian, Hong; Hu, Yi-Qi
Publicado por Springer, 2025
ISBN 10: 9819659280 ISBN 13: 9789819659289
Nuevo Tapa dura

Librería: Books Puddle, New York, NY, Estados Unidos de America

Calificación del vendedor: 4 de 5 estrellas Valoración 4 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: 26403830126

Contactar al vendedor

Comprar nuevo

EUR 213,07
Convertir moneda
Gastos de envío: EUR 9,82
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: 4 disponibles

Añadir al carrito

Imagen de archivo

Yu, Yang; Qian, Hong; Hu, Yi-Qi
Publicado por Springer, 2025
ISBN 10: 9819659280 ISBN 13: 9789819659289
Nuevo Tapa dura
Impresión bajo demanda

Librería: Majestic Books, Hounslow, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Print on Demand. Nº de ref. del artículo: 409356977

Contactar al vendedor

Comprar nuevo

EUR 223,81
Convertir moneda
Gastos de envío: EUR 10,19
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: 4 disponibles

Añadir al carrito

Existen otras 2 copia(s) de este libro

Ver todos los resultados de su búsqueda