In Silico Engineering of Disulphide Bonds to Produce Stable Cellulase (SpringerBriefs in Applied Sciences and Technology) - Tapa blanda

Barati, Bahram

 
9789812874313: In Silico Engineering of Disulphide Bonds to Produce Stable Cellulase (SpringerBriefs in Applied Sciences and Technology)

Sinopsis

This Brief highlights different approaches used to create stable cellulase and its use in different fields. Cellulase is an industrial enzyme with a broad range of significant applications in biofuel production and cellulosic waste management. Cellulase 7a from Trichoderma reesei is the most efficient enzyme in the bio hydrolysis of cellulose. In order to improve its thermal stability, it can be engineered using a variety of approaches, such as hydrophobic interactions, aromatic interactions, hydrogen bonds, ion pairs and disulfide bridge creation.

"Sinopsis" puede pertenecer a otra edición de este libro.

Acerca del autor

Dr. I. S. Amiri, received his B. Sc (Hons, Applied Physics) from Public University of Orumiyeh, Iran in 2001 and a gold medalist M. Sc. from Universiti Teknologi Malaysia (UTM), in 2009. He was awarded a PhD degree in nano photonics in 2013. He has published more than 200 journals/conferences and books in Optical Soliton Communications, Laser Physics, Photonics, Optics, Nanophotonics, Nonlinear fiber optics, Quantum Cryptography, Optical Tweezers, Nanotechnology, Biomedical Physics and Biotechnology Engineering. Now he is a visiting research fellow in University of Malaya, 50603 Kuala Lumpur, Malaysia.

Mr. B. Barati received his B. Sc (cellular and molecular Genetics) from Azad University of Tonekabon, Iran in 2011 and he is recently graduated from M. Sc. in Biotechnology from Universiti Teknologi Malaysia (UTM), in 2013. His research interests are in the field of protein engineering, enzyme production, Genetic engineering, drug design, molecular dynamic simulation and bioinformatics.

De la contraportada

This Brief highlights different approaches used to create stable cellulase and its use in different fields. Cellulase is an industrial enzyme with a broad range of significant applications in biofuel production and cellulosic waste management. Cellulase 7a from Trichoderma reesei is the most efficient enzyme in the biohydrolysis of cellulose. In order to improve its thermal stability, it can be engineered using a variety of approaches, such as hydrophobic interactions, aromatic interactions, hydrogen bonds, ion pairs and disulfide bridge creation.

"Sobre este título" puede pertenecer a otra edición de este libro.

Otras ediciones populares con el mismo título

9789812874337: In Silico Engineering of Disulphide Bonds to Produce Stable Cellulase

Edición Destacada

ISBN 10:  981287433X ISBN 13:  9789812874337
Editorial: Springer, 2015
Tapa blanda