Artículos relacionados a Principal Component Analysis and Randomness Test for...

Principal Component Analysis and Randomness Test for Big Data Analysis: Practical Applications of RMT-Based Technique - Tapa blanda

 
9789811939686: Principal Component Analysis and Randomness Test for Big Data Analysis: Practical Applications of RMT-Based Technique

Sinopsis

This book presents the novel approach of analyzing large-sized rectangular-shaped numerical data (so-called big data). The essence of this approach is to grasp the "meaning" of the data instantly, without getting into the details of individual data. Unlike conventional approaches of principal component analysis, randomness tests, and visualization methods, the authors' approach has the benefits of universality and simplicity of data analysis, regardless of data types, structures, or specific field of science.

First, mathematical preparation is described. The RMT-PCA and the RMT-test utilize the cross-correlation matrix of time series, XXT, where X represents a rectangular matrix of N rows and L columns and XT represents the transverse matrix of X. Because C is symmetric, namely, CT, it can be converted to a diagonal matrix of eigenvalues by a similarity transformation SCS-1 = SCST using an orthogonal matrix S. When N is significantly large, the histogram of the eigenvalue distribution can be compared to the theoretical formula derived in the context of the random matrix theory (RMT, in abbreviation).

Then the RMT-PCA applied to high-frequency stock prices in Japanese and American markets is dealt with. This approach proves its effectiveness in extracting "trendy" business sectors of the financial market over the prescribed time scale. In this case, X consists of N stock- prices of length L, and the correlation matrix C is an N by N square matrix, whose element at the i-th row and j-th column is the inner product of the price time series of the length L of the i-th stock and the j-th stock of the equal length L.

Next, the RMT-test is applied to measure randomness of various random number generators, including algorithmically generated random numbers and physically generated random numbers.

The book concludes by demonstrating two applications of the RMT-test: (1) a comparison of hash functions, and (2) stock prediction by means of randomness, including a new index of off-randomness related to market decline.

"Sinopsis" puede pertenecer a otra edición de este libro.

Comprar nuevo

Ver este artículo

EUR 13,80 gastos de envío desde Reino Unido a Estados Unidos de America

Destinos, gastos y plazos de envío

Otras ediciones populares con el mismo título

9789811939662: Principal Component Analysis and Randomness Test for Big Data Analysis: Practical Applications of RMT-Based Technique: 25 (Evolutionary Economics and Social Complexity Science)

Edición Destacada

ISBN 10:  9811939667 ISBN 13:  9789811939662
Editorial: Springer, 2023
Tapa dura

Resultados de la búsqueda para Principal Component Analysis and Randomness Test for...

Imagen de archivo

Tanaka-Yamawaki, Mieko; Ikura, Yumihiko
Publicado por Springer, 2023
ISBN 10: 9811939683 ISBN 13: 9789811939686
Nuevo Tapa blanda

Librería: Ria Christie Collections, Uxbridge, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. In. Nº de ref. del artículo: ria9789811939686_new

Contactar al vendedor

Comprar nuevo

EUR 54,11
Convertir moneda
Gastos de envío: EUR 13,80
De Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito