This book prepares students to execute the quantitative and computational needs of the finance industry. The quantitative methods are explained in detail with examples from real financial problems like option pricing, risk management, portfolio selection, etc. Codes are provided in R programming language to execute the methods. Tables and figures, often with real data, illustrate the codes. References to related work are intended to aid the reader to pursue areas of specific interest in further detail. The comprehensive background with economic, statistical, mathematical, and computational theory strengthens the understanding. The coverage is broad, and linkages between different sections are explained. The primary audience is graduate students, while it should also be accessible to advanced undergraduates. Practitioners working in the finance industry will also benefit.
"Sinopsis" puede pertenecer a otra edición de este libro.
Rituparna Sen is Associate Professor at the Applied Statistics Division, Indian Statistical Institute, Bangalore Centre, Karnataka, India. Earlier, she was Assistant Professor at the University of California at Davis from 2004–2011. With a Ph.D. in statistics from the University of Chicago, USA, she has been internationally recognized for her outstanding contributions to the applications of statistical theory and methods in finance and for her initiative and leadership in research, teaching, and mentoring in this area. She is on the editorial board of the Applied Stochastic Models in Business and Industry journal and several other journals. Rituparna is an elected member of the International Statistical Institute and a council member of the International Society for Business and Industrial Statistics. She has been awarded the Young Statistical Scientist Award by the International Indian Statistical Association in the Applications category and the Best Student Paper Award by the American Statistical Association section on the Statistical Computing and Women in Mathematical Sciences award by Technical University of Munich, Germany.
Sourish Das is Associate Professor of mathematics at Chennai Mathematical Institute (CMI), Tamil Nadu, India. At CMI, he teaches data science courses, including statistical finance using R and Python. His research interests are in Bayesian methodology, machine learning on big data in statistical finance, and environmental statistics. He did his Ph.D. in statistics from the University of Connecticut and postdoctoral work at Duke University, USA. He was awarded the UK Commonwealth Rutherford Fellowship to visit the University of Southampton, UK. He was awarded the Best Student Research Paper by the American Statistical Association section on Bayesian statistics.
This book prepares students to execute the quantitative and computational needs of the finance industry. The quantitative methods are explained in detail with examples from real financial problems like option pricing, risk management, portfolio selection, etc. Codes are provided in R programming language to execute the methods. Tables and figures, often with real data, illustrate the codes. References to related work are intended to aid the reader to pursue areas of specific interest in further detail. The comprehensive background with economic, statistical, mathematical, and computational theory strengthens the understanding. The coverage is broad, and linkages between different sections are explained. The primary audience is graduate students, while it should also be accessible to advanced undergraduates. Practitioners working in the finance industry will also benefit.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 14,90 gastos de envío desde Alemania a España
Destinos, gastos y plazos de envíoEUR 9,92 gastos de envío desde Estados Unidos de America a España
Destinos, gastos y plazos de envíoLibrería: Buchpark, Trebbin, Alemania
Condición: Hervorragend. Zustand: Hervorragend | Sprache: Englisch | Produktart: Bücher. Nº de ref. del artículo: 39244498/1
Cantidad disponible: 1 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 26395484562
Cantidad disponible: 1 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: New. Nº de ref. del artículo: 400892493
Cantidad disponible: 1 disponibles
Librería: Biblios, Frankfurt am main, HESSE, Alemania
Condición: New. Nº de ref. del artículo: 18395484568
Cantidad disponible: 1 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9789811920073_new
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 45995325-n
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
Condición: New. Nº de ref. del artículo: 45995325-n
Cantidad disponible: Más de 20 disponibles
Librería: moluna, Greven, Alemania
Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Discusses all aspects of computation, namely numerical, simulation, and statistical, in a single bookExplains every procedure with R code and is illustrated with tables and figuresIncludes two chapters on machine learning in finance based o. Nº de ref. del artículo: 573475007
Cantidad disponible: Más de 20 disponibles
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Buch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book prepares students to execute the quantitative and computational needs of the finance industry. The quantitative methods are explained in detail with examples from real financial problems like option pricing, risk management, portfolio selection, etc. Codes are provided in R programming language to execute the methods. Tables and figures, often with real data, illustrate the codes. References to related work are intended to aid the reader to pursue areas of specific interest in further detail. The comprehensive background with economic, statistical, mathematical, and computational theory strengthens the understanding. The coverage is broad, and linkages between different sections are explained. The primary audience is graduate students, while it should also be accessible to advanced undergraduates. Practitioners working in the finance industry will also benefit. 368 pp. Englisch. Nº de ref. del artículo: 9789811920073
Cantidad disponible: 2 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 45995325
Cantidad disponible: Más de 20 disponibles