The most crucial ability for machine learning and data science is mathematical logic for grasping their essence rather than relying on knowledge or experience. This textbook addresses the fundamentals of kernel methods for machine learning by considering relevant math problems and building R programs.
The book’s main features are as follows:
"Sinopsis" puede pertenecer a otra edición de este libro.
Joe Suzuki is a professor of statistics at Osaka University, Japan. He has published more than 100 papers on graphical models and information theory.
He is the author of a series of textbooks in machine learning published by Springer.
- Statistical Learning with Math and R- Statistical Learning with Math and Python- Sparse Estimation with Math and R
- Sparse Estimation with Math and Python- Kernel Methods for Machine Learning with Math and R (This book)- Kernel Methods for Machine Learning with Math and Python
The most crucial ability for machine learning and data science is mathematical logic for grasping their essence rather than relying on knowledge or experience. This textbook addresses the fundamentals of kernel methods for machine learning by considering relevant math problems and building R programs.
The book’s main features are as follows:
"Sobre este título" puede pertenecer a otra edición de este libro.
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. 2022nd edition NO-PA16APR2015-KAP. Nº de ref. del artículo: 26394716246
Cantidad disponible: 1 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: New. Nº de ref. del artículo: 401693577
Cantidad disponible: 1 disponibles
Librería: Basi6 International, Irving, TX, Estados Unidos de America
Condición: Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service. Nº de ref. del artículo: ABEOCT25-16945
Cantidad disponible: 1 disponibles
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
Condición: New. Nº de ref. del artículo: ABLIING23Apr0412070093952
Cantidad disponible: Más de 20 disponibles
Librería: Biblios, Frankfurt am main, HESSE, Alemania
Condición: New. Nº de ref. del artículo: 18394716252
Cantidad disponible: 1 disponibles
Librería: California Books, Miami, FL, Estados Unidos de America
Condición: New. Nº de ref. del artículo: I-9789811903977
Cantidad disponible: Más de 20 disponibles
Librería: ALLBOOKS1, Direk, SA, Australia
Brand new book. Fast ship. Please provide full street address as we are not able to ship to P O box address. Nº de ref. del artículo: SHAK16945
Cantidad disponible: 1 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9789811903977_new
Cantidad disponible: Más de 20 disponibles
Librería: Chiron Media, Wallingford, Reino Unido
PF. Condición: New. Nº de ref. del artículo: 6666-IUK-9789811903977
Cantidad disponible: 10 disponibles
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The most crucial ability for machine learning and data science is mathematical logic for grasping their essence rather than relying on knowledge or experience. This textbook addresses the fundamentals of kernel methods for machine learning by considering relevant math problems and building R programs.The book's main features are as follows:The content is written in an easy-to-follow and self-contained style.The book includes 100 exercises, which have been carefully selected and refined. As their solutions are provided in the main text, readers can solve all of the exercises by reading the book.The mathematical premises of kernels are proven and the correct conclusions are provided, helping readers to understand the nature of kernels.Source programs and running examples are presented to help readers acquire a deeper understanding of the mathematics used.Once readers have a basic understanding of the functional analysis topics covered in Chapter 2, the applications are discussed in the subsequent chapters. Here, no prior knowledge of mathematics is assumed.This book considers both the kernel for reproducing kernel Hilbert space (RKHS) and the kernel for the Gaussian process; a clear distinction is made between the two. 208 pp. Englisch. Nº de ref. del artículo: 9789811903977
Cantidad disponible: 2 disponibles