Artículos relacionados a Heterogeneous Graph Representation Learning and Applications...

Heterogeneous Graph Representation Learning and Applications (Artificial Intelligence: Foundations, Theory, and Algorithms) - Tapa dura

 
9789811661655: Heterogeneous Graph Representation Learning and Applications (Artificial Intelligence: Foundations, Theory, and Algorithms)
  • EditorialSpringer
  • Año de publicación2022
  • ISBN 10 9811661650
  • ISBN 13 9789811661655
  • EncuadernaciónTapa dura
  • IdiomaInglés
  • Número de edición1
  • Número de páginas340

Comprar nuevo

Ver este artículo

EUR 3,55 gastos de envío en Estados Unidos de America

Destinos, gastos y plazos de envío

Otras ediciones populares con el mismo título

9789811661686: Heterogeneous Graph Representation Learning and Applications (Artificial Intelligence: Foundations, Theory, and Algorithms)

Edición Destacada

ISBN 10:  9811661685 ISBN 13:  9789811661686
Editorial: Springer, 2023
Tapa blanda

Resultados de la búsqueda para Heterogeneous Graph Representation Learning and Applications...

Imagen de archivo

Shi, Chuan; Wang, Xiao; Yu, Philip S.
Publicado por Springer, 2022
ISBN 10: 9811661650 ISBN 13: 9789811661655
Nuevo Tapa dura

Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: ABLIING23Apr0412070093041

Contactar al vendedor

Comprar nuevo

EUR 173,66
Convertir moneda
Gastos de envío: EUR 3,55
A Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Shi, Chuan; Wang, Xiao; Yu, Philip S.
Publicado por Springer, 2022
ISBN 10: 9811661650 ISBN 13: 9789811661655
Nuevo Tapa dura

Librería: Ria Christie Collections, Uxbridge, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. In. Nº de ref. del artículo: ria9789811661655_new

Contactar al vendedor

Comprar nuevo

EUR 169,69
Convertir moneda
Gastos de envío: EUR 14,18
De Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

Shi, Chuan|Wang, Xiao|Yu, Philip S.
ISBN 10: 9811661650 ISBN 13: 9789811661655
Nuevo Tapa dura
Impresión bajo demanda

Librería: moluna, Greven, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Gebunden. Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Representation learning in heterogeneous graphs (HG) is intended to provide a meaningful vector representation for each node so as to facilitate downstream applications such as link prediction, personalized recommendation, node classification, etc. This tas. Nº de ref. del artículo: 495767046

Contactar al vendedor

Comprar nuevo

EUR 144,94
Convertir moneda
Gastos de envío: EUR 48,99
De Alemania a Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

Chuan Shi
ISBN 10: 9811661650 ISBN 13: 9789811661655
Nuevo Tapa dura
Impresión bajo demanda

Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Buch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Representation learning in heterogeneous graphs (HG) is intended to provide a meaningful vector representation for each node so as to facilitate downstream applications such as link prediction, personalized recommendation, node classification, etc. This task, however, is challenging not only because of the need to incorporate heterogeneous structural (graph) information consisting of multiple types of node and edge, but also the need to consider heterogeneous attributes or types of content (e.g. text or image) associated with each node. Although considerable advances have been made in homogeneous (and heterogeneous) graph embedding, attributed graph embedding and graph neural networks, feware capable of simultaneously and effectively taking into account heterogeneous structural (graph) information as well as the heterogeneous content information of each node.In this book, we provide a comprehensive survey of current developments in HG representation learning.More importantly, we present the state-of-the-art in this field, including theoretical models and real applications that have been showcased at the top conferences and journals, such as TKDE, KDD, WWW, IJCAI and AAAI. The book has two major objectives: (1) to provide researchers with an understanding of the fundamental issues and a good point of departure for working in this rapidly expanding field, and (2) to present the latest research on applying heterogeneous graphs to model real systems and learning structural features of interaction systems. To the best of our knowledge, it is the first book to summarize the latest developments and present cutting-edge research on heterogeneous graph representation learning. To gain the most from it, readers should have a basic grasp of computer science, data mining and machine learning. 340 pp. Englisch. Nº de ref. del artículo: 9789811661655

Contactar al vendedor

Comprar nuevo

EUR 171,19
Convertir moneda
Gastos de envío: EUR 23,00
De Alemania a Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen del vendedor

Chuan Shi
ISBN 10: 9811661650 ISBN 13: 9789811661655
Nuevo Tapa dura

Librería: AHA-BUCH GmbH, Einbeck, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Buch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - Representation learning in heterogeneous graphs (HG) is intended to provide a meaningful vector representation for each node so as to facilitate downstream applications such as link prediction, personalized recommendation, node classification, etc. This task, however, is challenging not only because of the need to incorporate heterogeneous structural (graph) information consisting of multiple types of node and edge, but also the need to consider heterogeneous attributes or types of content (e.g. text or image) associated with each node. Although considerable advances have been made in homogeneous (and heterogeneous) graph embedding, attributed graph embedding and graph neural networks, feware capable of simultaneously and effectively taking into account heterogeneous structural (graph) information as well as the heterogeneous content information of each node.In this book, we provide a comprehensive survey of current developments in HG representation learning.More importantly, we present the state-of-the-art in this field, including theoretical models and real applications that have been showcased at the top conferences and journals, such as TKDE, KDD, WWW, IJCAI and AAAI. The book has two major objectives: (1) to provide researchers with an understanding of the fundamental issues and a good point of departure for working in this rapidly expanding field, and (2) to present the latest research on applying heterogeneous graphs to model real systems and learning structural features of interaction systems. To the best of our knowledge, it is the first book to summarize the latest developments and present cutting-edge research on heterogeneous graph representation learning. To gain the most from it, readers should have a basic grasp of computer science, data mining and machine learning. Nº de ref. del artículo: 9789811661655

Contactar al vendedor

Comprar nuevo

EUR 175,09
Convertir moneda
Gastos de envío: EUR 31,37
De Alemania a Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito