Artículos relacionados a Deep Learning Applications, Volume 3: 1395 (Advances...

Deep Learning Applications, Volume 3: 1395 (Advances in Intelligent Systems and Computing) - Tapa blanda

 
9789811633560: Deep Learning Applications, Volume 3: 1395 (Advances in Intelligent Systems and Computing)

Sinopsis

This book presents a compilation of extended version of selected papers from the 19th IEEE International Conference on Machine Learning and Applications (IEEE ICMLA 2020) and focuses on deep learning networks in applications such as pneumonia detection in chest X-ray images, object detection and classification, RGB and depth image fusion, NLP tasks, dimensionality estimation, time series forecasting, building electric power grid for controllable energy resources, guiding charities in maximizing donations, and robotic control in industrial environments. Novel ways of using convolutional neural networks, recurrent neural network, autoencoder, deep evidential active learning, deep rapid class augmentation techniques, BERT models, multi-task learning networks, model compression and acceleration techniques, and conditional Feature Augmented and Transformed GAN (cFAT-GAN)  for the above applications are covered in this book. Readers will find insights to help them realize novel waysof using deep learning architectures and algorithms in real-world applications and contexts, making the book an essential reference guide for academic researchers, professionals, software engineers in the industry, and innovative product developers.

 

"Sinopsis" puede pertenecer a otra edición de este libro.

Acerca del autor

Dr. M. Arif Wani is Professor at the University of Kashmir, having previously served as Professor at California State University, Bakersfield. He completed his M. Tech. in Computer Technology at the   Indian Institute of Technology, Delhi, and his Ph.D. in Computer Vision at Cardiff University, UK. His research interests are in the area of machine learning, with a focus on neural networks, deep learning, inductive learning, and support vector machines, and with application to areas that include computer vision, pattern recognition, classification, prediction and analysis of gene expression datasets. He has published many papers in reputed journals and conferences in these areas. Dr. Wani has co-authored the book ‘Advances in Deep Learning’, co-edited many books in ‘Machine Learning and Applications’ and ‘Deep Learning Applications’. He is a member of many academic and professional bodies.

Dr. Bhiksha Raj is Professor in the School of Computer Science at Carnegie Mellon University, with additional affiliations to the Electrical Engineering and Machine Learning departments. He is Fellow of the IEEE. At CMU he leads the Machine Learning for Signal Processing group, which conducts research on Speech and Audio Processing, Machine Learning, Deep Learning, AI, and Security and Privacy Issues in Speech. He also teaches CMU’s flagship course on introduction to Deep Learning, a course simultaneously broadcast to multiple countries across the world, and attended by more than 2000 students from many universities and organizations around the world, each semester. He has authored or co-authored more than 300 scientific papers with over 12,000 citations and an H-index greater than 50 and holds numerous patents in the areas of signal processing, machine learning, privacy, audio and speech processing, and artificial intelligence.

Dr. Feng Luo currently is Professor at the School of Computing, Clemson University, and Founding Director of Clemson Artificial Intelligence Research Institute for Science and Engineering (AIRISE). He joined Clemson University in 2006. Before Clemson, He was Post-doctoral Senior Research Associate at the Department of Pathology of the University of Texas Southwestern Medical Center at Dallas. His research interests are machine learning/deep learning, bioinformatics, and big data analytics. He has published 58 journals and 30 conference papers in these areas. He holds a Ph.D. degree in Computer Science from the University of Texas at Dallas in 2004. He is Senior Member of IEEE.

Dejing Dou is Head of Big Data Lab (BDL) and Business Intelligence Lab (BIL) at Baidu Research. He is also Full Professor (on leave) from the Computer and Information Science Department at the University of Oregon and has led the Advanced Integration and Mining (AIM) Lab since 2005. He has been Director of the NSF IUCRC Center for Big Learning (CBL) since 2018. He was Visiting Associate Professor at Stanford Center for Biomedical Informatics Research during 2012–2013. Prof. Dou received his bachelor’s degree from Tsinghua University, China, in 1996 and his Ph.D. degree from Yale University in 2004.  His research areas include artificial intelligence, data mining, data integration, NLP, and health informatics. Dejing Dou has published more than 100 research papers, some of which appear in prestigious conferences and journals like AAAI, IJCAI, ICML, NeurIPS, ICLR, KDD, ICDM, ACL, EMNLP, CIKM, ISWC, TKDD, JIIS, and JoDS, with more than 3500 Google Scholar citations. His DEXA'15 paper received the best paper award. His KDD'07 paper was nominated for the best research paper award. He is on the Editorial Boards of Journal on Data Semantics, Journal of Intelligent Information Systems, and PLOS ONE. He has been serving as program committee members for major international conferences and as program co-chairs for five of them. He has received over $5 million PI research grants from the NSF and the NIH. Dejing Dou is Senior Member of ACM and IEEE.

 


De la contraportada

This book presents a compilation of extended version of selected papers from the 19th IEEE International Conference on Machine Learning and Applications (IEEE ICMLA 2020) and focuses on deep learning networks in applications such as pneumonia detection in chest X-ray images, object detection and classification, RGB and depth image fusion, NLP tasks, dimensionality estimation, time series forecasting, building electric power grid for controllable energy resources, guiding charities in maximizing donations, and robotic control in industrial environments. Novel ways of using convolutional neural networks, recurrent neural network, autoencoder, deep evidential active learning, deep rapid class augmentation techniques, BERT models, multi-task learning networks, model compression and acceleration techniques, and conditional Feature Augmented and Transformed GAN (cFAT-GAN)  for the above applications are covered in this book. Readers will find insights to help them realize novel ways of using deep learning architectures and algorithms in real-world applications and contexts, making the book an essential reference guide for academic researchers, professionals, software engineers in the industry, and innovative product developers.

  

"Sobre este título" puede pertenecer a otra edición de este libro.

  • EditorialSpringer
  • Año de publicación2021
  • ISBN 10 9811633568
  • ISBN 13 9789811633560
  • EncuadernaciónTapa blanda
  • IdiomaInglés
  • Número de edición1
  • Número de páginas336
  • EditorWani M. Arif, Raj Bhiksha, Luo Feng, Dou Dejing
  • Contacto del fabricanteno disponible

Comprar nuevo

Ver este artículo

EUR 19,49 gastos de envío desde Alemania a España

Destinos, gastos y plazos de envío

Resultados de la búsqueda para Deep Learning Applications, Volume 3: 1395 (Advances...

Imagen del vendedor

ISBN 10: 9811633568 ISBN 13: 9789811633560
Nuevo Tapa blanda
Impresión bajo demanda

Librería: moluna, Greven, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. This book presents a compilation of extended version of selected papers from the 19th IEEE International Conference on Machine Learning and Applications (IEEE ICMLA 2020) and focuses on deep learning networks in applications such as pneumonia detection i. Nº de ref. del artículo: 471555850

Contactar al vendedor

Comprar nuevo

EUR 127,40
Convertir moneda
Gastos de envío: EUR 19,49
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Publicado por Springer, 2021
ISBN 10: 9811633568 ISBN 13: 9789811633560
Nuevo Tapa blanda

Librería: Ria Christie Collections, Uxbridge, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. In. Nº de ref. del artículo: ria9789811633560_new

Contactar al vendedor

Comprar nuevo

EUR 142,50
Convertir moneda
Gastos de envío: EUR 4,65
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

M. Arif Wani
ISBN 10: 9811633568 ISBN 13: 9789811633560
Nuevo Taschenbuch
Impresión bajo demanda

Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book presents a compilation of extended version of selected papers from the 19th IEEE International Conference on Machine Learning and Applications (IEEE ICMLA 2020) and focuses on deep learning networks in applications such as pneumonia detection in chest X-ray images, object detection and classification, RGB and depth image fusion, NLP tasks, dimensionality estimation, time series forecasting, building electric power grid for controllable energy resources, guiding charities in maximizing donations, and robotic control in industrial environments. Novel ways of using convolutional neural networks, recurrent neural network, autoencoder, deep evidential active learning, deep rapid class augmentation techniques, BERT models, multi-task learning networks, model compression and acceleration techniques, and conditional Feature Augmented and Transformed GAN (cFAT-GAN) for the above applications are covered in this book. Readers will find insights to help them realize novel waysof using deep learning architectures and algorithms in real-world applications and contexts, making the book an essential reference guide for academic researchers, professionals, software engineers in the industry, and innovative product developers. 336 pp. Englisch. Nº de ref. del artículo: 9789811633560

Contactar al vendedor

Comprar nuevo

EUR 149,79
Convertir moneda
Gastos de envío: EUR 11,00
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen del vendedor

M. Arif Wani
ISBN 10: 9811633568 ISBN 13: 9789811633560
Nuevo Taschenbuch

Librería: AHA-BUCH GmbH, Einbeck, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book presents a compilation of extended version of selected papers from the 19th IEEE International Conference on Machine Learning and Applications (IEEE ICMLA 2020) and focuses on deep learning networks in applications such as pneumonia detection in chest X-ray images, object detection and classification, RGB and depth image fusion, NLP tasks, dimensionality estimation, time series forecasting, building electric power grid for controllable energy resources, guiding charities in maximizing donations, and robotic control in industrial environments. Novel ways of using convolutional neural networks, recurrent neural network, autoencoder, deep evidential active learning, deep rapid class augmentation techniques, BERT models, multi-task learning networks, model compression and acceleration techniques, and conditional Feature Augmented and Transformed GAN (cFAT-GAN) for the above applications are covered in this book. Readers will find insights to help them realize novel waysof using deep learning architectures and algorithms in real-world applications and contexts, making the book an essential reference guide for academic researchers, professionals, software engineers in the industry, and innovative product developers. Nº de ref. del artículo: 9789811633560

Contactar al vendedor

Comprar nuevo

EUR 157,86
Convertir moneda
Gastos de envío: EUR 11,99
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen del vendedor

M. Arif Wani
ISBN 10: 9811633568 ISBN 13: 9789811633560
Nuevo Taschenbuch

Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. Neuware -This book presents a compilation of extended version of selected papers from the 19th IEEE International Conference on Machine Learning and Applications (IEEE ICMLA 2020) and focuses on deep learning networks in applications such as pneumonia detection in chest X-ray images, object detection and classification, RGB and depth image fusion, NLP tasks, dimensionality estimation, time series forecasting, building electric power grid for controllable energy resources, guiding charities in maximizing donations, and robotic control in industrial environments. Novel ways of using convolutional neural networks, recurrent neural network, autoencoder, deep evidential active learning, deep rapid class augmentation techniques, BERT models, multi-task learning networks, model compression and acceleration techniques, and conditional Feature Augmented and Transformed GAN (cFAT-GAN) for the above applications are covered in this book. Readers will find insights to help them realize novel waysof using deep learning architectures and algorithms in real-world applications and contexts, making the book an essential reference guide for academic researchers, professionals, software engineers in the industry, and innovative product developers.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 336 pp. Englisch. Nº de ref. del artículo: 9789811633560

Contactar al vendedor

Comprar nuevo

EUR 149,79
Convertir moneda
Gastos de envío: EUR 35,00
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen de archivo

Publicado por Springer, 2021
ISBN 10: 9811633568 ISBN 13: 9789811633560
Nuevo Tapa blanda

Librería: California Books, Miami, FL, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: I-9789811633560

Contactar al vendedor

Comprar nuevo

EUR 185,41
Convertir moneda
Gastos de envío: EUR 6,96
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Publicado por Springer, 2021
ISBN 10: 9811633568 ISBN 13: 9789811633560
Nuevo Tapa blanda

Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: ABLIING23Apr0412070092228

Contactar al vendedor

Comprar nuevo

EUR 150,61
Convertir moneda
Gastos de envío: EUR 65,22
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Wani, M. Arif (Editor)/ Raj, Bhiksha (Editor)/ Luo, Feng (Editor)/ Dou, Dejing (Editor)
Publicado por Springer Nature, 2022
ISBN 10: 9811633568 ISBN 13: 9789811633560
Nuevo Paperback

Librería: Revaluation Books, Exeter, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Paperback. Condición: Brand New. 334 pages. 9.25x6.10x0.79 inches. In Stock. Nº de ref. del artículo: x-9811633568

Contactar al vendedor

Comprar nuevo

EUR 221,74
Convertir moneda
Gastos de envío: EUR 11,68
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito