Matrix algebra plays an important role in many core artificial intelligence (AI) areas, including machine learning, neural networks, support vector machines (SVMs) and evolutionary computation. This book offers a comprehensive and in-depth discussion of matrix algebra theory and methods for these four core areas of AI, while also approaching AI from a theoretical matrix algebra perspective.
"Sinopsis" puede pertenecer a otra edición de este libro.
XIAN-DA ZHANG is a Professor Emeritus at the Department of Automation, Tsinghua University, China. He was a Distinguished Professor at Xidian University, Xi’an, China, as part of the Ministry of Education of China and Cheung Kong Scholars Programme, from 1999 to 2002. His areas of research include intelligent signal and information processing, pattern recognition, machine learning and neural networks, evolutional computation, and correlated applied mathematics. He has published over 120 international journal and conference papers. The Japanese translation of his book “Linear Algebra in Signal Processing” (published in Chinese by Science Press, Beijing, in 1997) was published by Morikita Press, Tokyo, in 2008. He also authored the book “Matrix Analysis and Applications” (Cambridge University Press, UK, 2017).
Matrix algebra plays an important role in many core artificial intelligence (AI) areas, including machine learning, neural networks, support vector machines (SVMs) and evolutionary computation. This book offers a comprehensive and in-depth discussion of matrix algebra theory and methods for these four core areas of AI, while also approaching AI from a theoretical matrix algebra perspective.
"Sobre este título" puede pertenecer a otra edición de este libro.
Librería: moluna, Greven, Alemania
Gebunden. Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Proposes the machine learning tree, the neural network tree and the evolutionary computation treePresents the solid matrix algebra theory and methods for machine learning, neural networks, support vector machines and evolution. Nº de ref. del artículo: 342244986
Cantidad disponible: Más de 20 disponibles
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Buch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Matrix algebra plays an important role in many core artificial intelligence (AI) areas, including machine learning, neural networks, support vector machines (SVMs) and evolutionary computation. This book offers a comprehensive and in-depth discussion of matrix algebra theory and methods for these four core areas of AI, while also approaching AI from a theoretical matrix algebra perspective.The book consists of two parts: the first discusses the fundamentals of matrix algebra in detail, while the second focuses on the applications of matrix algebra approaches in AI. Highlighting matrix algebra in graph-based learning and embedding, network embedding, convolutional neural networks and Pareto optimization theory, and discussing recent topics and advances, the book offers a valuable resource for scientists, engineers, and graduate students in various disciplines, including, but not limited to, computer science, mathematics and engineering. 856 pp. Englisch. Nº de ref. del artículo: 9789811527692
Cantidad disponible: 2 disponibles
Librería: preigu, Osnabrück, Alemania
Buch. Condición: Neu. A Matrix Algebra Approach to Artificial Intelligence | Xian-Da Zhang | Buch | xxxiv | Englisch | 2020 | Springer Singapore | EAN 9789811527692 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu Print on Demand. Nº de ref. del artículo: 117883260
Cantidad disponible: 5 disponibles
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
Buch. Condición: Neu. This item is printed on demand - Print on Demand Titel. Neuware -Matrix algebra plays an important role in many core artificial intelligence (AI) areas, including machine learning, neural networks, support vector machines (SVMs) and evolutionary computation. This book offers a comprehensive and in-depth discussion of matrix algebra theory and methods for these four core areas of AI, while also approaching AI from a theoretical matrix algebra perspective.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 856 pp. Englisch. Nº de ref. del artículo: 9789811527692
Cantidad disponible: 1 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Buch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - Matrix algebra plays an important role in many core artificial intelligence (AI) areas, including machine learning, neural networks, support vector machines (SVMs) and evolutionary computation. This book offers a comprehensive and in-depth discussion of matrix algebra theory and methods for these four core areas of AI, while also approaching AI from a theoretical matrix algebra perspective.The book consists of two parts: the first discusses the fundamentals of matrix algebra in detail, while the second focuses on the applications of matrix algebra approaches in AI. Highlighting matrix algebra in graph-based learning and embedding, network embedding, convolutional neural networks and Pareto optimization theory, and discussing recent topics and advances, the book offers a valuable resource for scientists, engineers, and graduate students in various disciplines, including, but not limited to, computer science, mathematics and engineering. Nº de ref. del artículo: 9789811527692
Cantidad disponible: 1 disponibles