This book presents recent advances in intrusion detection systems (IDSs) using state-of-the-art deep learning methods. It also provides a systematic overview of classical machine learning and the latest developments in deep learning. In particular, it discusses deep learning applications in IDSs in different classes: generative, discriminative, and adversarial networks. Moreover, it compares various deep learning-based IDSs based on benchmarking datasets. The book also proposes two novel feature learning models: deep feature extraction and selection (D-FES) and fully unsupervised IDS. Further challenges and research directions are presented at the end of the book.
Offering a comprehensive overview of deep learning-based IDS, the book is a valuable reerence resource for undergraduate and graduate students, as well as researchers and practitioners interested in deep learning and intrusion detection. Further, the comparison of various deep-learning applications helps readers gain a basic understanding of machine learning, and inspires applications in IDS and other related areas in cybersecurity.
"Sinopsis" puede pertenecer a otra edición de este libro.
Kwangjo Kim is a Fellow of the International Association for Cryptologic Research (IACR). He received B.Sc. and M.Sc. degrees in Electronic Engineering from Yonsei University, Seoul, Korea, in 1980 and 1983, respectively, and a Ph.D. from the Division of Electrical and Computer Engineering, Yokohama National University, Japan, in 1991. He was a Visiting Professor at the MIT and the UC at San Diego USA, in 2005 and the Khalifa University of Science, Technology and Research, Abu Dhabi, UAE, in 2012 and an Education Specialist at the Bandung Institute of Technology, Bandung, Indonesia, in 2013. He is currently a Full Professor at the School of Computing and Graduate School of Information Security, Korea Advanced Institute of Science and Technology, Daejeon, the Korean representative to IFIP TC-11 and the honorary President of the Korea Institute of Information Security and Cryptography (KIISC). His current research interests include the theory and practices of cryptology and information security. Prof. Kim served as a Board Member of the IACR from 2000 to 2004, Chairperson of the Asiacrypt Steering Committee from 2005 to 2008 and President of KIISC in 2009. He is also a member of IEICE, IEEE, ACM and KIISC.
Muhamad Erza Aminanto received B.S. and M.S. degrees in Electrical Engineering from Bandung Institute of Technology (ITB), Indonesia in 2013 and 2014, respectively. He is pursuing his Ph.D in the School of Computing at Korea Advanced Institute of Science and Technology (KAIST), South Korea. His current research interests include machine-learning, intrusion detection systems and big data analytics. His recent work entitled "Deep Abstraction and Weighted Feature Selection for Wi-Fi Impersonation Detection” was published with Kwangjo Kim in IEEE Transactions of Information Forensics and Security (IF:4.332) in 2017.
Harry Chandra Tanuwidajaja received B.S. and M.S. degrees in Electrical Engineering from the Bandung Institute of Technology (ITB), Indonesia in 2013 and 2015, respectively. He is pursuing his Ph.D in the School of Computing at the Korea Advanced Institute of Science and Technology (KAIST), South Korea. His current research interests include malware detection, machine-learning, and intrusion detection systems
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 17,16 gastos de envío desde Estados Unidos de America a España
Destinos, gastos y plazos de envíoEUR 11,00 gastos de envío desde Alemania a España
Destinos, gastos y plazos de envíoLibrería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book presents recent advances in intrusion detection systems (IDSs) using state-of-the-art deep learning methods. It also provides a systematic overview of classical machine learning and the latest developments in deep learning. In particular, it discusses deep learning applications in IDSs in different classes: generative, discriminative, and adversarial networks. Moreover, it compares various deep learning-based IDSs based on benchmarking datasets. The book also proposes two novel feature learning models: deep feature extraction and selection (D-FES) and fully unsupervised IDS. Further challenges and research directions are presented at the end of the book. Offering a comprehensive overview of deep learning-based IDS, the book is a valuable reerence resource for undergraduate and graduate students, as well as researchers and practitioners interested in deep learning and intrusion detection. Further, the comparison of various deep-learning applications helps readers gain a basic understanding of machine learning, and inspires applications in IDS and other related areas in cybersecurity. 100 pp. Englisch. Nº de ref. del artículo: 9789811314438
Cantidad disponible: 2 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9789811314438_new
Cantidad disponible: Más de 20 disponibles
Librería: moluna, Greven, Alemania
Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Surveys deep learning-based IDSs Suggests future directions for IDS research Describes how to apply deep learning in IDSDiscusses learning for better attack detectionKwangjo Kim is a Fellow of the Interna. Nº de ref. del artículo: 385951202
Cantidad disponible: Más de 20 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Taschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book presents recent advances in intrusion detection systems (IDSs) using state-of-the-art deep learning methods. It also provides a systematic overview of classical machine learning and the latest developments in deep learning. In particular, it discusses deep learning applications in IDSs in different classes: generative, discriminative, and adversarial networks. Moreover, it compares various deep learning-based IDSs based on benchmarking datasets. The book also proposes two novel feature learning models: deep feature extraction and selection (D-FES) and fully unsupervised IDS. Further challenges and research directions are presented at the end of the book. Offering a comprehensive overview of deep learning-based IDS, the book is a valuable reerence resource for undergraduate and graduate students, as well as researchers and practitioners interested in deep learning and intrusion detection. Further, the comparison of various deep-learning applications helps readers gain a basic understanding of machine learning, and inspires applications in IDS and other related areas in cybersecurity. Nº de ref. del artículo: 9789811314438
Cantidad disponible: 1 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 33175314-n
Cantidad disponible: Más de 20 disponibles
Librería: Chiron Media, Wallingford, Reino Unido
Paperback. Condición: New. Nº de ref. del artículo: 6666-IUK-9789811314438
Cantidad disponible: 10 disponibles
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
Condición: New. Nº de ref. del artículo: 33175314-n
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 33175314
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 33175314
Cantidad disponible: Más de 20 disponibles
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
Taschenbuch. Condición: Neu. Neuware -This book presents recent advances in intrusion detection systems (IDSs) using state-of-the-art deep learning methods. It also provides a systematic overview of classical machine learning and the latest developments in deep learning. In particular, it discusses deep learning applications in IDSs in different classes: generative, discriminative, and adversarial networks. Moreover, it compares various deep learning-based IDSs based on benchmarking datasets. The book also proposes two novel feature learning models: deep feature extraction and selection (D-FES) and fully unsupervised IDS. Further challenges and research directions are presented at the end of the book.Offering a comprehensive overview of deep learning-based IDS, the book is a valuable reerence resource for undergraduate and graduate students, as well as researchers and practitioners interested in deep learning and intrusion detection. Further, the comparison of various deep-learning applications helps readers gain a basic understanding of machine learning, and inspires applications in IDS and other related areas in cybersecurity.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 100 pp. Englisch. Nº de ref. del artículo: 9789811314438
Cantidad disponible: 2 disponibles