Artículos relacionados a Equilibrium Statistical Mechanics of Lattice Models...

Equilibrium Statistical Mechanics of Lattice Models (Theoretical and Mathematical Physics) - Tapa dura

 
9789401794299: Equilibrium Statistical Mechanics of Lattice Models (Theoretical and Mathematical Physics)

Sinopsis

Most interesting and difficult problems in equilibrium statistical mechanics concern models which exhibit phase transitions. For graduate students and more experienced researchers this book provides an invaluable reference source of approximate and exact solutions for a comprehensive range of such models.
Part I contains background material on classical thermodynamics and statistical mechanics, together with a classification and survey of lattice models. The geometry of phase transitions is described and scaling theory is used to introduce critical exponents and scaling laws. An introduction is given to finite-size scaling, conformal invariance and Schramm-Loewner evolution.
Part II contains accounts of classical mean-field methods. The parallels between Landau expansions and catastrophe theory are discussed and Ginzburg--Landau theory is introduced. The extension of mean-field theory to higher-orders is explored using the Kikuchi--Hijmans--De Boer hierarchy of approximations.
In Part III the use of algebraic, transformation and decoration methods to obtain exact system information is considered. This is followed by an account of the use of transfer matrices for the location of incipient phase transitions in one-dimensionally infinite models and for exact solutions for two-dimensionally infinite systems. The latter is applied to a general analysis of eight-vertex models yielding as special cases the two-dimensional Ising model and the six-vertex model. The treatment of exact results ends with a discussion of dimer models.
In Part IV series methods and real-space renormalization group transformations are discussed. The use of the De Neef-Enting finite-lattice method is described in detail and applied to the derivation of series for a number of model systems, in particular for the Potts model. The use of Pad\'e, differential and algebraic approximants to locate and analyze second- and first-order transitions is described. The realization of the ideas of scaling theory by the renormalization group is presented together with treatments of various approximation schemes including phenomenological renormalization.
Part V of the book contains a collection of mathematical appendices intended to minimise the need to refer to other mathematical sources.

"Sinopsis" puede pertenecer a otra edición de este libro.

De la contraportada

Most interesting and difficult problems in equilibrium statistical mechanics concern models which exhibit phase transitions. For graduate students and more experienced researchers this book provides an invaluable reference source of approximate and exact solutions for a comprehensive range of such models. Part I contains background material on classical thermodynamics and statistical mechanics, together with a classification and survey of lattice models. The geometry of phase transitions is described and scaling theory is used to introduce critical exponents and scaling laws. An introduction is given to finite-size scaling, conformal invariance and Schramm Loewner evolution. Part II contains accounts of classical mean-field methods. The parallels between Landau expansions and catastrophe theory are discussed and Ginzburg Landau theory is introduced. The extension of mean-field theory to higher-orders is explored using the Kikuchi Hijmans De Boer hierarchy of approximations. In Part III the use of algebraic, transformation and decoration methods to obtain exact system information is considered. This is followed by an account of the use of transfer matrices for the location of incipient phase transitions in one-dimensionally infinite models and for exact solutions for two-dimensionally infinite systems. The latter is applied to a general analysis of eight-vertex models yielding as special cases the two-dimensional Ising model and the six-vertex model. The treatment of exact results ends with a discussion of dimer models. In Part IV series methods and real-space renormalization group transformations are discussed. The use of the De Neef Enting finite-lattice method is described in detail and applied to the derivation of series for a number of model systems, in particular for the Potts model. The use of Padé, differential and algebraic approximants to locate and analyze second- and first-order transitions is described. The realization of the ideas of scaling theory by the renormalization group is presented together with treatments of various approximation schemes including phenomenological renormalization. Part V of the book contains a collection of mathematical appendices intended to minimise the need to refer to other mathematical sources.

"Sobre este título" puede pertenecer a otra edición de este libro.

Comprar usado

Condición: Como Nuevo
like new
Ver este artículo

EUR 11,90 gastos de envío desde Alemania a España

Destinos, gastos y plazos de envío

Comprar nuevo

Ver este artículo

EUR 19,49 gastos de envío desde Alemania a España

Destinos, gastos y plazos de envío

Otras ediciones populares con el mismo título

9789402405040: Equilibrium Statistical Mechanics of Lattice Models (Theoretical and Mathematical Physics)

Edición Destacada

ISBN 10:  9402405046 ISBN 13:  9789402405040
Editorial: Springer, 2016
Tapa blanda

Resultados de la búsqueda para Equilibrium Statistical Mechanics of Lattice Models...

Imagen de archivo

Lavis, David A.
Publicado por Springer, 2015
ISBN 10: 9401794294 ISBN 13: 9789401794299
Antiguo o usado Tapa dura

Librería: SpringBooks, Berlin, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Hardcover. Condición: As New. like new. Nº de ref. del artículo: CEA-2306C-SOFA-02-2000

Contactar al vendedor

Comprar usado

EUR 62,13
Convertir moneda
Gastos de envío: EUR 11,90
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen del vendedor

David A. Lavis
Publicado por Springer Netherlands, 2015
ISBN 10: 9401794294 ISBN 13: 9789401794299
Nuevo Tapa dura
Impresión bajo demanda

Librería: moluna, Greven, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Gebunden. Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. From one author of the successful two-volume work on statistical mechanics by Lavis and Bell (Springer, 1999)Includes accounts of mean-field, exact, renormalization group and series methods for critical phenomenaAn accurate and scholarly bo. Nº de ref. del artículo: 15108823

Contactar al vendedor

Comprar nuevo

EUR 127,40
Convertir moneda
Gastos de envío: EUR 19,49
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Lavis, David A.
Publicado por Springer, 2015
ISBN 10: 9401794294 ISBN 13: 9789401794299
Nuevo Tapa dura

Librería: Ria Christie Collections, Uxbridge, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. In. Nº de ref. del artículo: ria9789401794299_new

Contactar al vendedor

Comprar nuevo

EUR 154,06
Convertir moneda
Gastos de envío: EUR 5,21
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

David A. Lavis
Publicado por Springer Netherlands Feb 2015, 2015
ISBN 10: 9401794294 ISBN 13: 9789401794299
Nuevo Tapa dura
Impresión bajo demanda

Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Buch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Most interesting and difficult problems in equilibrium statistical mechanics concern models which exhibit phase transitions. For graduate students and more experienced researchers this book provides an invaluable reference source of approximate and exact solutions for a comprehensive range of such models.Part I contains background material on classical thermodynamics and statistical mechanics, together with a classification and survey of lattice models. The geometry of phase transitions is described and scaling theory is used to introduce critical exponents and scaling laws. An introduction is given to finite-size scaling, conformal invariance and Schramm-Loewner evolution.Part II contains accounts of classical mean-field methods. The parallels between Landau expansions and catastrophe theory are discussed and Ginzburg--Landau theory is introduced. The extension of mean-field theory to higher-orders is explored using the Kikuchi--Hijmans--De Boer hierarchy of approximations. In Part III the use of algebraic, transformation and decoration methods to obtain exact system information is considered. This is followed by an account of the use of transfer matrices for the location of incipient phase transitions in one-dimensionally infinite models and for exact solutions for two-dimensionally infinite systems. The latter is applied to a general analysis of eight-vertex models yielding as special cases the two-dimensional Ising model and the six-vertex model. The treatment of exact results ends with a discussion of dimer models. In Part IV series methods and real-space renormalization group transformations are discussed. The use of the De Neef-Enting finite-lattice method is described in detail and applied to the derivation of series for a number of model systems, in particular for the Potts model. The use of Pad'e, differential and algebraic approximants to locate and analyze second- and first-order transitions is described. The realization of the ideas of scaling theory by the renormalization group is presented together with treatments of various approximation schemes including phenomenological renormalization. Part V of the book contains a collection of mathematical appendices intended to minimise the need to refer to other mathematical sources. 812 pp. Englisch. Nº de ref. del artículo: 9789401794299

Contactar al vendedor

Comprar nuevo

EUR 149,79
Convertir moneda
Gastos de envío: EUR 11,00
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen del vendedor

David A. Lavis
ISBN 10: 9401794294 ISBN 13: 9789401794299
Nuevo Tapa dura

Librería: AHA-BUCH GmbH, Einbeck, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Buch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - Most interesting and difficult problems in equilibrium statistical mechanics concern models which exhibit phase transitions. For graduate students and more experienced researchers this book provides an invaluable reference source of approximate and exact solutions for a comprehensive range of such models.Part I contains background material on classical thermodynamics and statistical mechanics, together with a classification and survey of lattice models. The geometry of phase transitions is described and scaling theory is used to introduce critical exponents and scaling laws. An introduction is given to finite-size scaling, conformal invariance and Schramm-Loewner evolution.Part II contains accounts of classical mean-field methods. The parallels between Landau expansions and catastrophe theory are discussed and Ginzburg--Landau theory is introduced. The extension of mean-field theory to higher-orders is explored using the Kikuchi--Hijmans--De Boer hierarchy of approximations.In Part III the use of algebraic, transformation and decoration methods to obtain exact system information is considered. This is followed by an account of the use of transfer matrices for the location of incipient phase transitions in one-dimensionally infinite models and for exact solutions for two-dimensionally infinite systems. The latter is applied to a general analysis of eight-vertex models yielding as special cases the two-dimensional Ising model and the six-vertex model. The treatment of exact results ends with a discussion of dimer models. In Part IV series methods and real-space renormalization group transformations are discussed. The use of the De Neef-Enting finite-lattice method is described in detail and applied to the derivation of series for a number of model systems, in particular for the Potts model. The use of Pad'e, differential and algebraic approximants to locate and analyze second- and first-order transitions is described. The realization of the ideasof scaling theory by the renormalization group is presented together with treatments of various approximation schemes including phenomenological renormalization. Part V of the book contains a collection of mathematical appendices intended to minimise the need to refer to other mathematical sources. Nº de ref. del artículo: 9789401794299

Contactar al vendedor

Comprar nuevo

EUR 155,82
Convertir moneda
Gastos de envío: EUR 11,99
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen del vendedor

David A. Lavis
ISBN 10: 9401794294 ISBN 13: 9789401794299
Nuevo Tapa dura

Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Buch. Condición: Neu. Neuware -Most interesting and difficult problems in equilibrium statistical mechanics concern models which exhibit phase transitions. For graduate students and more experienced researchers this book provides an invaluable reference source of approximate and exact solutions for a comprehensive range of such models.Part I contains background material on classical thermodynamics and statistical mechanics, together with a classification and survey of lattice models. The geometry of phase transitions is described and scaling theory is used to introduce critical exponents and scaling laws. An introduction is given to finite-size scaling, conformal invariance and Schramm¿Loewner evolution.Part II contains accounts of classical mean-field methods. The parallels between Landau expansions and catastrophe theory are discussed and Ginzburg--Landau theory is introduced. The extension of mean-field theory to higher-orders is explored using the Kikuchi--Hijmans--De Boer hierarchy of approximations.In Part III the use of algebraic, transformation and decoration methods to obtain exact system information is considered. This is followed by an account of the use of transfer matrices for the location of incipient phase transitions in one-dimensionally infinite models and for exact solutions for two-dimensionally infinite systems. The latter is applied to a general analysis of eight-vertex models yielding as special cases the two-dimensional Ising model and the six-vertex model. The treatment of exact results ends with a discussion of dimer models.In Part IV series methods and real-space renormalization group transformations are discussed. The use of the De Neef¿Enting finite-lattice method is described in detail and applied to the derivation of series for a number of model systems, in particular for the Potts model. The use of Pad'e, differential and algebraic approximants to locate and analyze second- and first-order transitions is described. The realization of the ideasof scaling theory by the renormalization group is presented together with treatments of various approximation schemes including phenomenological renormalization.Part V of the book contains a collection of mathematical appendices intended to minimise the need to refer to other mathematical sources.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 812 pp. Englisch. Nº de ref. del artículo: 9789401794299

Contactar al vendedor

Comprar nuevo

EUR 149,79
Convertir moneda
Gastos de envío: EUR 35,00
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen de archivo

Lavis, David A.
Publicado por Springer, 2015
ISBN 10: 9401794294 ISBN 13: 9789401794299
Nuevo Tapa dura

Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: ABLIING23Apr0412070061169

Contactar al vendedor

Comprar nuevo

EUR 148,22
Convertir moneda
Gastos de envío: EUR 63,72
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Lavis, David
Publicado por Springer Verlag, 2015
ISBN 10: 9401794294 ISBN 13: 9789401794299
Nuevo Tapa dura

Librería: Revaluation Books, Exeter, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Hardcover. Condición: Brand New. 2015 edition. 760 pages. French language. 9.25x6.25x2.00 inches. In Stock. Nº de ref. del artículo: x-9401794294

Contactar al vendedor

Comprar nuevo

EUR 227,76
Convertir moneda
Gastos de envío: EUR 11,61
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito