The theoretical chemist is accustomed to judging the success of a theoretical prediction according to how well it agrees with an experimental measurement. Since the object of theory is the prediction of the results of experiment, that would appear to be an entirely satisfactory state ofaffairs. However, ifit is true that "the underlying physicallaws ...for the whole ofchemistryare ...completely known" (1), thenit shouldbepossible,atleastinprinciple, topredict theresults of experiment moreaccurately than they canbe measured. Ifthe theoreticalchemist could obtain exact solutions ofthe Schrodinger equation for many-body systems, then the experimental chemist would soon become accustomed to judging the success ofan experimental measurement by how well it agrees with a theoretical prediction. In fact, it is now possible to obtainexact solutions ofthe Schrodinger equation for systems ofa few electrons(2-8). These systems include the molecular ion Ht, the molecule H , the reaction intermediate H-H-H, the unstable pair H-He, the 2 stable dimer He2' and the trimer He3. The quantum Monte Carlo method used in solving the time-independent Schrodinger equation for these systems is exact in that it requires no physical or mathematical assumptions beyond those of the Schrodinger equation. As in most Monte Carlo methods there is a statistical or sampling error which is readily estimated.
"Sinopsis" puede pertenecer a otra edición de este libro.
The theoretical chemist is accustomed to judging the success of a theoretical prediction according to how well it agrees with an experimental measurement. Since the object of theory is the prediction of the results of experiment, that would appear to be an entirely satisfactory state ofaffairs. However, ifit is true that "the underlying physicallaws ...for the whole ofchemistryare ...completely known" (1), thenit shouldbepossible,atleastinprinciple, topredict theresults of experiment moreaccurately than they canbe measured. Ifthe theoreticalchemist could obtain exact solutions ofthe Schrodinger equation for many-body systems, then the experimental chemist would soon become accustomed to judging the success ofan experimental measurement by how well it agrees with a theoretical prediction. In fact, it is now possible to obtainexact solutions ofthe Schrodinger equation for systems ofa few electrons(2-8). These systems include the molecular ion Ht, the molecule H , the reaction intermediate H-H-H, the unstable pair H-He, the 2 stable dimer He2' and the trimer He3. The quantum Monte Carlo method used in solving the time-independent Schrodinger equation for these systems is exact in that it requires no physical or mathematical assumptions beyond those of the Schrodinger equation. As in most Monte Carlo methods there is a statistical or sampling error which is readily estimated.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 11,00 gastos de envío desde Alemania a España
Destinos, gastos y plazos de envíoLibrería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The theoretical chemist is accustomed to judging the success of a theoretical prediction according to how well it agrees with an experimental measurement. Since the object of theory is the prediction of the results of experiment, that would appear to be an entirely satisfactory state ofaffairs. However, ifit is true that 'the underlying physicallaws . for the whole ofchemistryare . completely known' (1), thenit shouldbepossible,atleastinprinciple, topredict theresults of experiment moreaccurately than they canbe measured. Ifthe theoreticalchemist could obtain exact solutions ofthe Schrodinger equation for many-body systems, then the experimental chemist would soon become accustomed to judging the success ofan experimental measurement by how well it agrees with a theoretical prediction. In fact, it is now possible to obtainexact solutions ofthe Schrodinger equation for systems ofa few electrons(2-8). These systems include the molecular ion Ht, the molecule H , the reaction intermediate H-H-H, the unstable pair H-He, the 2 stable dimer He2' and the trimer He3. The quantum Monte Carlo method used in solving the time-independent Schrodinger equation for these systems is exact in that it requires no physical or mathematical assumptions beyond those of the Schrodinger equation. As in most Monte Carlo methods there is a statistical or sampling error which is readily estimated. 460 pp. Englisch. Nº de ref. del artículo: 9789401040877
Cantidad disponible: 2 disponibles
Librería: moluna, Greven, Alemania
Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Exact Quantum Chemistry by Monte Carlo Methods J.B. Anderson. Achieving Chemical Accuracy with Coupled-Cluster Theory T.J. Lee, G.E. Scuseria. Magnetic Hyperfine Coupling Constants in Free Radicals D.M. Chipman. Calculation of Accurate Bond Energies,. Nº de ref. del artículo: 5830882
Cantidad disponible: Más de 20 disponibles
Librería: Best Price, Torrance, CA, Estados Unidos de America
Condición: New. SUPER FAST SHIPPING. Nº de ref. del artículo: 9789401040877
Cantidad disponible: 1 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9789401040877_new
Cantidad disponible: Más de 20 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Taschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - The theoretical chemist is accustomed to judging the success of a theoretical prediction according to how well it agrees with an experimental measurement. Since the object of theory is the prediction of the results of experiment, that would appear to be an entirely satisfactory state ofaffairs. However, ifit is true that 'the underlying physicallaws . for the whole ofchemistryare . completely known' (1), thenit shouldbepossible,atleastinprinciple, topredict theresults of experiment moreaccurately than they canbe measured. Ifthe theoreticalchemist could obtain exact solutions ofthe Schrodinger equation for many-body systems, then the experimental chemist would soon become accustomed to judging the success ofan experimental measurement by how well it agrees with a theoretical prediction. In fact, it is now possible to obtainexact solutions ofthe Schrodinger equation for systems ofa few electrons(2-8). These systems include the molecular ion Ht, the molecule H , the reaction intermediate H-H-H, the unstable pair H-He, the 2 stable dimer He2' and the trimer He3. The quantum Monte Carlo method used in solving the time-independent Schrodinger equation for these systems is exact in that it requires no physical or mathematical assumptions beyond those of the Schrodinger equation. As in most Monte Carlo methods there is a statistical or sampling error which is readily estimated. Nº de ref. del artículo: 9789401040877
Cantidad disponible: 1 disponibles
Librería: California Books, Miami, FL, Estados Unidos de America
Condición: New. Nº de ref. del artículo: I-9789401040877
Cantidad disponible: Más de 20 disponibles
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - Print on Demand Titel. Neuware -The theoretical chemist is accustomed to judging the success of a theoretical prediction according to how well it agrees with an experimental measurement. Since the object of theory is the prediction of the results of experiment, that would appear to be an entirely satisfactory state ofaffairs. However, ifit is true that 'the underlying physicallaws . for the whole ofchemistryare . completely known' (1), thenit shouldbepossible,atleastinprinciple, topredict theresults of experiment moreaccurately than they canbe measured. Ifthe theoreticalchemist could obtain exact solutions ofthe Schrodinger equation for many-body systems, then the experimental chemist would soon become accustomed to judging the success ofan experimental measurement by how well it agrees with a theoretical prediction. In fact, it is now possible to obtainexact solutions ofthe Schrodinger equation for systems ofa few electrons(2-8). These systems include the molecular ion Ht, the molecule H , the reaction intermediate H-H-H, the unstable pair H-He, the 2 stable dimer He2' and the trimer He3. The quantum Monte Carlo method used in solving the time-independent Schrodinger equation for these systems is exact in that it requires no physical or mathematical assumptions beyond those of the Schrodinger equation. As in most Monte Carlo methods there is a statistical or sampling error which is readily estimated.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 460 pp. Englisch. Nº de ref. del artículo: 9789401040877
Cantidad disponible: 1 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. pp. v + 449 Softcover Reprint of the Original 1st Edition 1995. Nº de ref. del artículo: 2648029182
Cantidad disponible: 4 disponibles
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
Condición: New. Nº de ref. del artículo: ABLIING23Apr0412070054295
Cantidad disponible: Más de 20 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: New. Print on Demand pp. v + 449. Nº de ref. del artículo: 44786209
Cantidad disponible: 4 disponibles