The theory of differential equations originated at the end of the seventeenth century in the works of I. Newton, G. W. Leibniz and others. During the first century of its existence, this theory consisted only of isolated methods of solving certain types of differential equations; but the problem of the existence of a solution and its representability in quadratures was posed already in the second. As a result of numerous investigations it became clear that integrability in quadratures is an extremely rare phe nomenon and that the solution of many differential equations arising in applications cannot be expressed in quadratures. Also the methods of numerical integration of equations did not open the road to the general theory since these methods yield only one particular solution and this solution is obtained on a finite interval. Applications - especially the problems of celestial mechanics - required the clarification of at least the nature of the behavior of integral curves in the entire domain of their existence without integration of the equation. In this connection, at the end of the last century there arose the qualitative theory of differential equations, the creators of which one must by all rights consider to be H. Poincare and A. M. Lyapunov.
"Sinopsis" puede pertenecer a otra edición de este libro.
The theory of differential equations originated at the end of the seventeenth century in the works of I. Newton, G. W. Leibniz and others. During the first century of its existence, this theory consisted only of isolated methods of solving certain types of differential equations; but the problem of the existence of a solution and its representability in quadratures was posed already in the second. As a result of numerous investigations it became clear that integrability in quadratures is an extremely rare phe nomenon and that the solution of many differential equations arising in applications cannot be expressed in quadratures. Also the methods of numerical integration of equations did not open the road to the general theory since these methods yield only one particular solution and this solution is obtained on a finite interval. Applications - especially the problems of celestial mechanics - required the clarification of at least the nature of the behavior of integral curves in the entire domain of their existence without integration of the equation. In this connection, at the end of the last century there arose the qualitative theory of differential equations, the creators of which one must by all rights consider to be H. Poincare and A. M. Lyapunov.
"Sobre este título" puede pertenecer a otra edición de este libro.
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
Condición: New. Nº de ref. del artículo: ABLIING23Apr0412070053713
Cantidad disponible: Más de 20 disponibles
Librería: California Books, Miami, FL, Estados Unidos de America
Condición: New. Nº de ref. del artículo: I-9789401023108
Cantidad disponible: Más de 20 disponibles
Librería: Chiron Media, Wallingford, Reino Unido
Paperback. Condición: New. Nº de ref. del artículo: 6666-IUK-9789401023108
Cantidad disponible: 10 disponibles
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The theory of differential equations originated at the end of the seventeenth century in the works of I. Newton, G. W. Leibniz and others. During the first century of its existence, this theory consisted only of isolated methods of solving certain types of differential equations; but the problem of the existence of a solution and its representability in quadratures was posed already in the second. As a result of numerous investigations it became clear that integrability in quadratures is an extremely rare phe nomenon and that the solution of many differential equations arising in applications cannot be expressed in quadratures. Also the methods of numerical integration of equations did not open the road to the general theory since these methods yield only one particular solution and this solution is obtained on a finite interval. Applications - especially the problems of celestial mechanics - required the clarification of at least the nature of the behavior of integral curves in the entire domain of their existence without integration of the equation. In this connection, at the end of the last century there arose the qualitative theory of differential equations, the creators of which one must by all rights consider to be H. Poincare and A. M. Lyapunov. 176 pp. Englisch. Nº de ref. del artículo: 9789401023108
Cantidad disponible: 2 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. pp. 176. Nº de ref. del artículo: 26142320595
Cantidad disponible: 4 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: New. Print on Demand pp. 176 23:B&W 6 x 9 in or 229 x 152 mm Perfect Bound on White w/Gloss Lam. Nº de ref. del artículo: 135011340
Cantidad disponible: 4 disponibles
Librería: Revaluation Books, Exeter, Reino Unido
Paperback. Condición: Brand New. 176 pages. 8.98x6.14x0.39 inches. In Stock. Nº de ref. del artículo: x-9401023107
Cantidad disponible: 2 disponibles
Librería: Biblios, Frankfurt am main, HESSE, Alemania
Condición: New. PRINT ON DEMAND pp. 176. Nº de ref. del artículo: 18142320601
Cantidad disponible: 4 disponibles
Librería: moluna, Greven, Alemania
Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. The theory of differential equations originated at the end of the seventeenth century in the works of I. Newton, G. W. Leibniz and others. During the first century of its existence, this theory consisted only of isolated methods of solving certain types of . Nº de ref. del artículo: 5830195
Cantidad disponible: Más de 20 disponibles
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - Print on Demand Titel. Neuware -The theory of differential equations originated at the end of the seventeenth century in the works of I. Newton, G. W. Leibniz and others. During the first century of its existence, this theory consisted only of isolated methods of solving certain types of differential equations; but the problem of the existence of a solution and its representability in quadratures was posed already in the second. As a result of numerous investigations it became clear that integrability in quadratures is an extremely rare phe nomenon and that the solution of many differential equations arising in applications cannot be expressed in quadratures. Also the methods of numerical integration of equations did not open the road to the general theory since these methods yield only one particular solution and this solution is obtained on a finite interval. Applications - especially the problems of celestial mechanics - required the clarification of at least the nature of the behavior of integral curves in the entire domain of their existence without integration of the equation. In this connection, at the end of the last century there arose the qualitative theory of differential equations, the creators of which one must by all rights consider to be H. Poincare and A. M. Lyapunov.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 176 pp. Englisch. Nº de ref. del artículo: 9789401023108
Cantidad disponible: 1 disponibles