Data Science and Machine Learning are the leading buzzwords of today. This book covers all aspects of these subjects, from data definition and categorization, classification techniques, clustering and ML algorithms to data stream and association rule mining, language data processing and neural networks. It explains descriptive and inferential statistical analysis, probability distribution and density functions as well as time series. It also describes the fundamentals of Python programming, the Python environment and libraries such as scikit-learn, NumPy and pandas, and takes a deep dive into data visualization modules and tools. Mastery of these areas will enable readers to become proficient and effective data scientists. Salient features • Ideal for undergraduate courses on Data Science and Analytics • Provides step-by-step instructions for setting up the Python environment and executing various libraries and packages • All chapters include relevant case studies, their Python code and output; the last chapter is dedicated to case studies • Over 300 exercise questions comprising MCQs, programming exercises and concept-based questions, with answers provided for quick reference • Bibliography at the end of every chapter for further reading • Android app with chapter-wise PowerPoint slides and job interview questions
"Sinopsis" puede pertenecer a otra edición de este libro.
Sandhya Arora is Professor, Department of Computer Engineering, MKSSS’s Cummins College of Engineering, Pune, Maharashtra.
Latesh Malik is Associate Professor, Department of Computer Science and Engineering, Government College of Engineering, Nagpur, Maharashtra.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 16,50 gastos de envío desde India a España
Destinos, gastos y plazos de envíoLibrería: Books in my Basket, New Delhi, India
N.A. Condición: New. ISBN:9789393330345 N.A. Nº de ref. del artículo: 2367275
Cantidad disponible: 20 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: New. Nº de ref. del artículo: 399943122
Cantidad disponible: 4 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 26396433933
Cantidad disponible: 4 disponibles
Librería: Biblios, Frankfurt am main, HESSE, Alemania
Condición: New. Nº de ref. del artículo: 18396433927
Cantidad disponible: 4 disponibles
Librería: PBShop.store US, Wood Dale, IL, Estados Unidos de America
PAP. Condición: New. New Book. Shipped from UK. Established seller since 2000. Nº de ref. del artículo: M0-9789393330345
Cantidad disponible: 3 disponibles
Librería: Vedams eBooks (P) Ltd, New Delhi, India
Soft cover. Condición: New. Contents: Preface. 1. Introduction to Data Science. 2. Environment Set-up and Basics of Python. 3. NumPy and pandas. 4. Data Visualization. 5. Python scikit-learn. 6. Environment Set-up: TensorFlow and Keras. 7. Probability. 8. Machine Learning and Data Pre-processing. 9. Statistical Analysis: Descriptive Statistics. 10. Statistical Analysis: Inferential Statistics. 11. Classification. 12. Prescriptive Analytics: Data Stream Mining. 13. Language Data Processing in Python. 14. Clustering. 15. Association Rule Mining. 16. Time Series Analysis Using Python. 17. Deep Neural Network and Convolutional Neural Network. 18. Case Studies. Index. Data Science and Machine Learning are the leading buzzwords of today. This book covers all aspects of these subjects, from data definition and categorization, classification techniques, clustering and ML algorithms to data stream and association rule mining, language data processing and neural networks. It explains descriptive and inferential statistical analysis, probability distribution and density functions as well as time series. It also describes the fundamentals of Python programming, the Python environment and libraries such as scikit-learn, NumPy and pandas, and takes a deep dive into data visualization modules and tools. Mastery of these areas will enable students to become proficient and effective data scientists. Salient features Ideal for undergraduate courses on Data Science and Analytics Provides step-by-step instructions for setting up the Python environment and executing various libraries and packages All chapters include relevant case studies, their Python code and output; the last chapter is dedicated to case studies Over 300 exercise questions comprising MCQs, programming exercises and concept-based questions, with answers provided for quick reference Bibliography at the end of every chapter for further reading Android app with chapter-wise PowerPoint slides and job interview questions. Nº de ref. del artículo: 139292A
Cantidad disponible: 5 disponibles
Librería: PBShop.store UK, Fairford, GLOS, Reino Unido
PAP. Condición: New. New Book. Shipped from UK. Established seller since 2000. Nº de ref. del artículo: M0-9789393330345
Cantidad disponible: 3 disponibles
Librería: Mispah books, Redhill, SURRE, Reino Unido
paperback. Condición: New. New. book. Nº de ref. del artículo: ERICA82393933303446
Cantidad disponible: 1 disponibles