Description
Our book is divided into several useful concepts and techniques of machine learning. This book serves as a valuable resource for individuals seeking to deepen their understanding of advanced topics in this field.
Learn about various learning algorithms, including supervised, unsupervised, and reinforcement learning, and their mathematical foundations. Discover the significance of feature engineering and selection for enhancing model performance. Understand model evaluation metrics like accuracy, precision, recall, and F1-score, along with techniques like cross-validation and grid search for model selection. Explore ensemble learning methods along with deep learning, unsupervised learning, time series analysis, and reinforcement learning techniques. Lastly, uncover real-world applications of the machine and deep learning algorithms.
After reading this book, readers will gain a comprehensive understanding of machine learning fundamentals and advanced techniques. With this knowledge, readers will be equipped to tackle real-world problems, make informed decisions, and develop innovative solutions using machine and deep learning algorithms.
Key Features
● Basic understanding of machine learning algorithms via MATLAB, R, and Python.
● Inclusion of examples related to real-world problems, case studies, and questions related to futuristic technologies.
● Adding futuristic technologies related to machine learning and deep learning.
What you will learn
● Ability to tackle complex machine learning problems.
● Understanding of foundations, algorithms, ethical issues, and how to implement each learning algorithm for their own use/ with their data.
● Efficient data analysis for real-time data will be understood by researchers/ students.
● Using data analysis in near future topics and cutting-edge technologies.
Who this book is for
This book is ideal for students, professors, and researchers. It equips industry experts and academics with the technical know-how and practical implementations of machine learning algorithms.
Table of Contents
1. Introduction to Machine Learning
2. Statistical Analysis
3. Linear Regression
4. Logistic Regression
5. Decision Trees
6. Random Forest
7. Rule-Based Classifiers
8. Naïve Bayesian Classifier
9. K-Nearest Neighbors Classifiers
10. Support Vector Machine
11. K-Means Clustering
12. Dimensionality Reduction
13. Association Rules Mining and FP Growth
14. Reinforcement Learning
15. Applications of ML Algorithms
16. Applications of Deep Learning
17. Advance Topics and Future Directions
"Sinopsis" puede pertenecer a otra edición de este libro.
Dr. Amit Kumar Tyagi is working as an Assistant Professor, at the National Institute of Fashion Technology, 110016, New Delhi, India. Previously, he has worked as Assistant Professor (Senior Grade 2), and Senior Researcher at Vellore Institute of Technology (VIT), Chennai Campus, 600127, Chennai, Tamilandu, India for the period of 2019-2022. He received his Ph.D. Degree (Full-Time) in 2018 from Pondicherry Central University, 605014, Puducherry, India. About his academic experience, he joined the Lord Krishna College of Engineering, Ghaziabad (LKCE) for the periods of 2009-2010, and 2012-2013.
Dr. Khushboo Tripathi received her Ph. D. degree in computer science from the University of Allahabad, Prayagraj. She has completed her M. Tech in Computer Science and Engineering from KNIT Sultanpur, M. Sc, and B.Sc. from the University of Allahabad, Prayagraj.
Dr. Avinash Kumar Sharma is currently working as an Associate Professor at the Department of Computer Science & Engineering, Sharda School of Engineering and Technology (SSET), Sharda University, Greater Noida. Dr. Avinash Kumar Sharma has completed his Ph.D at Uttarakhand Technical University, Dehradun (A State Govt. University) in Cloud Computing.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 17,55 gastos de envío desde Estados Unidos de America a España
Destinos, gastos y plazos de envíoEUR 10,51 gastos de envío desde Reino Unido a España
Destinos, gastos y plazos de envíoLibrería: Majestic Books, Hounslow, Reino Unido
Condición: New. Nº de ref. del artículo: 396148942
Cantidad disponible: 1 disponibles
Librería: California Books, Miami, FL, Estados Unidos de America
Condición: New. Nº de ref. del artículo: I-9789355516343
Cantidad disponible: Más de 20 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9789355516343_new
Cantidad disponible: Más de 20 disponibles
Librería: BargainBookStores, Grand Rapids, MI, Estados Unidos de America
Paperback or Softback. Condición: New. Advanced Machine Learning: Fundamentals and algorithms (English Edition) 1.96. Book. Nº de ref. del artículo: BBS-9789355516343
Cantidad disponible: 5 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 47921705-n
Cantidad disponible: Más de 20 disponibles
Librería: Speedyhen, London, Reino Unido
Condición: NEW. Nº de ref. del artículo: NW9789355516343
Cantidad disponible: 1 disponibles
Librería: PBShop.store UK, Fairford, GLOS, Reino Unido
PAP. Condición: New. New Book. Shipped from UK. Established seller since 2000. Nº de ref. del artículo: GB-9789355516343
Cantidad disponible: 1 disponibles
Librería: PBShop.store US, Wood Dale, IL, Estados Unidos de America
PAP. Condición: New. New Book. Shipped from UK. Established seller since 2000. Nº de ref. del artículo: GB-9789355516343
Cantidad disponible: 1 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 47921705
Cantidad disponible: Más de 20 disponibles
Librería: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlanda
Condición: New. Nº de ref. del artículo: V9789355516343
Cantidad disponible: 1 disponibles