There has been an explosive growth of methods in recent years for learning (or estimating dependency) from data, where data refers to known samples that are combinations of inputs and corresponding outputs of a given physical system. The main subject addressed in this thesis is model induction from data for the simulation of hydrodynamic processes in the aquatic environment. Firstly, some currently popular artificial neural network architectures are introduced, and it is then argued that these devices can be regarded as domain knowledge incapsulators by applying the method to the generation of wave equations from hydraulic data and showing how the equations of numerical-hydraulic models can, in their turn, be recaptured using artificial neural networks. The book also demonstrates how artificial neural networks can be used to generate numerical operators on non-structured grids for the simulation of hydrodynamic processes in two-dimensional flow systems and a methodology has been derived for developing generic hydrodynamic models using artificial neural network. The book also highlights one other model induction technique, namely that of support vector machine, as an emerging new method with a potential to provide more robust models.
"Sinopsis" puede pertenecer a otra edición de este libro.
YONAS BERHAN DIBIKE born in Addis Ababa, Ethiopia Master of Science with Distinction, IHE.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 0,79 gastos de envío desde Estados Unidos de America a España
Destinos, gastos y plazos de envíoLibrería: PBShop.store US, Wood Dale, IL, Estados Unidos de America
PAP. Condición: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Nº de ref. del artículo: IQ-9789058093561
Cantidad disponible: 15 disponibles
Librería: California Books, Miami, FL, Estados Unidos de America
Condición: New. Nº de ref. del artículo: I-9789058093561
Cantidad disponible: Más de 20 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9789058093561_new
Cantidad disponible: Más de 20 disponibles
Librería: PBShop.store UK, Fairford, GLOS, Reino Unido
PAP. Condición: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Nº de ref. del artículo: L0-9789058093561
Cantidad disponible: Más de 20 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: New. pp. 160 66:B&W 7 x 10 in or 254 x 178 mm Perfect Bound on White w/Gloss Lam This item is printed on demand. Nº de ref. del artículo: 5703992
Cantidad disponible: 3 disponibles
Librería: Revaluation Books, Exeter, Reino Unido
Paperback. Condición: Brand New. 1st edition. 156 pages. 9.75x6.75x0.50 inches. In Stock. This item is printed on demand. Nº de ref. del artículo: __9058093565
Cantidad disponible: 1 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. pp. 160. Nº de ref. del artículo: 262143975
Cantidad disponible: 3 disponibles
Librería: Biblios, Frankfurt am main, HESSE, Alemania
Condición: New. pp. 160. Nº de ref. del artículo: 182143981
Cantidad disponible: 3 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Taschenbuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - There has been an explosive growth of methods in recent years for learning (or estimating dependency) from data. This work addresses model induction from data for the simulation of hydrodynamic processes in the aquatic environment. Nº de ref. del artículo: 9789058093561
Cantidad disponible: 1 disponibles
Librería: moluna, Greven, Alemania
Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. YONAS BERHAN DIBIKE born in Addis Ababa, Ethiopia Master of Science with Distinction, IHE.There has been an explosive growth of methods in recent years for learning (or estimating dependency) from data, where data refers to known samples that are combin. Nº de ref. del artículo: 599122350
Cantidad disponible: Más de 20 disponibles