Engineering practice often has to deal with complex systems of multiple variable and multiple parameter models almost always with strong non-linear coupling. The conventional analytical techniques-based approaches for describing and predicting the behaviour of such systems in many cases are doomed to failure from the outset, even in the phase of the construction of a more or less appropriate mathematical model. These approaches normally are too categorical in the sense that in the name of “modelling accuracy” they try to describe all the structural details of the real physical system to be modelled. This can significantly increase the intricacy of the model and may result in a enormous computational burden without achieving considerable improvement of the solution. The best paradigm exemplifying this situation may be the classic perturbation theory: the less significant the achievable correction, the more work has to be invested to obtain it.
A further important component of machine intelligence is a kind of “structural uniformity” giving room and possibility to model arbitrary particular details a priori not specified and unknown. This idea is similar to the ready-to-wear industry, which introduced products, which can be slightly modified later on in contrast to tailor-made creations aiming at maximum accuracy from the beginning. These subsequent corrections can be carried out by machines automatically. This “learning ability” is a key element of machine intelligence.
The past decade confirmed that the view of typical components of the present soft computing as fuzzy logic, neural computing, evolutionary computation and probabilistic reasoning are of complementary nature and that the best results can be applied by their combined application.
Today, the two complementary branches of Machine Intelligence, that is, Artificial Intelligence and Computational Intelligence serve as the basis of Intelligent Engineering Systems. Thehuge number of scientific results published in Journal and conference proceedings worldwide substantiates this statement. The present book contains several articles taking different viewpoints in the field of intelligent systems.
"Sinopsis" puede pertenecer a otra edición de este libro.
Engineering practice often has to deal with complex systems of multiple variable and multiple parameter models almost always with strong non-linear coupling. The conventional analytical techniques-based approaches for describing and predicting the behaviour of such systems in many cases are doomed to failure from the outset, even in the phase of the construction of a more or less appropriate mathematical model. The best paradigm exemplifying this situation may be the classic perturbation theory: the less significant the achievable correction, the more work has to be invested to obtain it.
A further important component of machine intelligence is a kind of structural uniformity giving room and possibility to model arbitrary particular details a priori not specified and unknown. This idea is similar to the ready-to-wear industry, which introduced products, which can be slightly modified later on in contrast to tailor-made creations aiming at maximum accuracy from the beginning. These subsequent corrections can be carried out by machines automatically. This learning ability is a key element of machine intelligence.
The past decade confirmed that the view of typical components of the present soft computing as fuzzy logic, neural computing, evolutionary computation and probabilistic reasoning are of complementary nature and that the best results can be applied by their combined application.
Today, the two complementary branches of Machine Intelligence, that is, Artificial Intelligence and Computational Intelligence serve as the basis of Intelligent Engineering Systems. The huge number of scientific results published in Journal and conference proceedings worldwide substantiates this statement. The present book contains several articles taking different viewpoints in the field of intelligent systems.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 19,49 gastos de envío desde Alemania a España
Destinos, gastos y plazos de envíoLibrería: moluna, Greven, Alemania
Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. State of the art in the subjectState of the art in the subjectEngineering practice often has to deal with complex systems of multiple variable and multiple parameter models almost always with strong non-linear coupling. The conventional an. Nº de ref. del artículo: 5821783
Cantidad disponible: Más de 20 disponibles
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Engineering practice often has to deal with complex systems of multiple variable and multiple parameter models almost always with strong non-linear coupling. The conventional analytical techniques-based approaches for describing and predicting the behaviour of such systems in many cases are doomed to failure from the outset, even in the phase of the construction of a more or less appropriate mathematical model. These approaches normally are too categorical in the sense that in the name of 'modelling accuracy' they try to describe all the structural details of the real physical system to be modelled. This can significantly increase the intricacy of the model and may result in a enormous computational burden without achieving considerable improvement of the solution. The best paradigm exemplifying this situation may be the classic perturbation theory: the less significant the achievable correction, the more work has to be invested to obtain it. A further important component of machine intelligence is a kind of 'structural uniformity' giving room and possibility to model arbitrary particular details a priori not specified and unknown. This idea is similar to the ready-to-wear industry, which introduced products, which can be slightly modified later on in contrast to tailor-made creations aiming at maximum accuracy from the beginning. These subsequent corrections can be carried out by machines automatically. This 'learning ability' is a key element of machine intelligence.The past decade confirmed that the view of typical components of the present soft computing as fuzzy logic, neural computing, evolutionary computation and probabilistic reasoning are of complementary nature and that the best results can be applied by their combined application.Today, the two complementary branches of Machine Intelligence, that is, Artificial Intelligence and Computational Intelligence serve as the basis of Intelligent Engineering Systems. The huge number of scientific results published in Journal and conference proceedings worldwide substantiates this statement. The present book contains several articles taking different viewpoints in the field of intelligent systems. 472 pp. Englisch. Nº de ref. del artículo: 9789048179497
Cantidad disponible: 2 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9789048179497_new
Cantidad disponible: Más de 20 disponibles
Librería: Best Price, Torrance, CA, Estados Unidos de America
Condición: New. SUPER FAST SHIPPING. Nº de ref. del artículo: 9789048179497
Cantidad disponible: 2 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Taschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - Engineering practice often has to deal with complex systems of multiple variable and multiple parameter models almost always with strong non-linear coupling. The conventional analytical techniques-based approaches for describing and predicting the behaviour of such systems in many cases are doomed to failure from the outset, even in the phase of the construction of a more or less appropriate mathematical model. These approaches normally are too categorical in the sense that in the name of 'modelling accuracy' they try to describe all the structural details of the real physical system to be modelled. This can significantly increase the intricacy of the model and may result in a enormous computational burden without achieving considerable improvement of the solution. The best paradigm exemplifying this situation may be the classic perturbation theory: the less significant the achievable correction, the more work has to be invested to obtain it. A further important component of machine intelligence is a kind of 'structural uniformity' giving room and possibility to model arbitrary particular details a priori not specified and unknown. This idea is similar to the ready-to-wear industry, which introduced products, which can be slightly modified later on in contrast to tailor-made creations aiming at maximum accuracy from the beginning. These subsequent corrections can be carried out by machines automatically. This 'learning ability' is a key element of machine intelligence.The past decade confirmed that the view of typical components of the present soft computing as fuzzy logic, neural computing, evolutionary computation and probabilistic reasoning are of complementary nature and that the best results can be applied by their combined application.Today, the two complementary branches of Machine Intelligence, that is, Artificial Intelligence and Computational Intelligence serve as the basis of Intelligent Engineering Systems. Thehuge number of scientific results published in Journal and conference proceedings worldwide substantiates this statement. The present book contains several articles taking different viewpoints in the field of intelligent systems. Nº de ref. del artículo: 9789048179497
Cantidad disponible: 1 disponibles
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - Print on Demand Titel. Neuware -Engineering practice often has to deal with complex systems of multiple variable and multiple parameter models almost always with strong non-linear coupling. The conventional analytical techniques-based approaches for describing and predicting the behaviour of such systems in many cases are doomed to failure from the outset, even in the phase of the construction of a more or less appropriate mathematical model. These approaches normally are too categorical in the sense that in the name of ¿modelling accuracy¿ they try to describe all the structural details of the real physical system to be modelled. This can significantly increase the intricacy of the model and may result in a enormous computational burden without achieving considerable improvement of the solution. The best paradigm exemplifying this situation may be the classic perturbation theory: the less significant the achievable correction, the more work has to be invested to obtain it.A further important component of machine intelligence is a kind of ¿structural uniformity¿ giving room and possibility to model arbitrary particular details a priori not specified and unknown. This idea is similar to the ready-to-wear industry, which introduced products, which can be slightly modified later on in contrast to tailor-made creations aiming at maximum accuracy from the beginning. These subsequent corrections can be carried out by machines automatically. This ¿learning ability¿ is a key element of machine intelligence.The past decade confirmed that the view of typical components of the present soft computing as fuzzy logic, neural computing, evolutionary computation and probabilistic reasoning are of complementary nature and that the best results can be applied by their combined application.Today, the two complementary branches of Machine Intelligence, that is, Artificial Intelligence and Computational Intelligence serve as the basis of Intelligent Engineering Systems. Thehuge number of scientific results published in Journal and conference proceedings worldwide substantiates this statement. The present book contains several articles taking different viewpoints in the field of intelligent systems.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 472 pp. Englisch. Nº de ref. del artículo: 9789048179497
Cantidad disponible: 1 disponibles
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
Condición: New. Nº de ref. del artículo: ABLIING23Apr0316110339058
Cantidad disponible: Más de 20 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. pp. 472. Nº de ref. del artículo: 263093650
Cantidad disponible: 4 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: New. Print on Demand pp. 472 49:B&W 6.14 x 9.21 in or 234 x 156 mm (Royal 8vo) Perfect Bound on White w/Gloss Lam. Nº de ref. del artículo: 5802829
Cantidad disponible: 4 disponibles
Librería: Biblios, Frankfurt am main, HESSE, Alemania
Condición: New. PRINT ON DEMAND pp. 472. Nº de ref. del artículo: 183093656
Cantidad disponible: 4 disponibles