Artículos relacionados a Resolution of Curve and Surface Singularities in Characteris...

Resolution of Curve and Surface Singularities in Characteristic Zero: in Characteristic Zero (Algebra and Applications): 4 - Tapa blanda

 
9789048165735: Resolution of Curve and Surface Singularities in Characteristic Zero: in Characteristic Zero (Algebra and Applications): 4

Sinopsis

The Curves The Point of View of Max Noether Probably the oldest references to the problem of resolution of singularities are found in Max Noether’s works on plane curves [cf. [148], [149]]. And probably the origin of the problem was to have a formula to compute the genus of a plane curve. The genus is the most useful birational invariant of a curve in classical projective geometry. It was long known that, for a plane curve of degree n having l m ordinary singular points with respective multiplicities ri, i E {1, . . . , m}, the genus p of the curve is given by the formula = (n - l)(n - 2) _ ~ "r. (r. _ 1) P 2 2 L. . ,. •• . Of course, the problem now arises: how to compute the genus of a plane curve having some non-ordinary singularities. This leads to the natural question: can we birationally transform any (singular) plane curve into another one having only ordinary singularities? The answer is positive. Let us give a flavor (without proofs) 2 on how Noether did it • To solve the problem, it is enough to consider a special kind of Cremona trans­ formations, namely quadratic transformations of the projective plane. Let ~ be a linear system of conics with three non-collinear base points r = {Ao, AI, A }, 2 and take a projective frame of the type {Ao, AI, A ; U}.

"Sinopsis" puede pertenecer a otra edición de este libro.

Críticas

From the reviews:

"As indicated in the title ... describes different methods of resolution of singularities of curves and surfaces ... . The first seven chapters are dedicated to developing the material ... . The two appendixes, on algebraic geometry and commutative algebra, contain generalities and classical results needed in the previous chapters. This completes one of the aims of the authors: To write a book as self-contained as possible. ... In conclusion, the book is an interesting exposition of resolution of singularities in low dimensions ... ." (Ana Bravo, Mathematical Reviews, 2005e)

"The monograph presents a modern theory of resolution of isolated singularities of algebraic curves and surfaces over algebraically closed fields of characteristic zero. ... The exposition is self-contained and is supplied by an appendix, covering some classical algebraic geometry and commutative algebra." (Eugenii I. Shustin, Zentralblatt MATH, Vol. 1069 (20), 2005)

Reseña del editor

This book covers the beautiful theory of resolutions of surface singularities in characteristic zero. The primary goal is to present in detail, and for the first time in one volume, two proofs for the existence of such resolutions. One construction was introduced by H.W.E. Jung, and another is due to O. Zariski. Jung's approach uses quasi-ordinary singularities and an explicit study of specific surfaces in affine three-space. In particular, a new proof of the Jung-Abhyankar theorem is given via ramification theory. Zariski's method, as presented, involves repeated normalisation and blowing up points. It also uses the uniformization of zero-dimensional valuations of function fields in two variables, for which a complete proof is given.

Despite the intention to serve graduate students and researchers of Commutative Algebra and Algebraic Geometry, a basic knowledge on these topics is necessary only. This is obtained by a thorough introduction of the needed algebraic tools in the two appendices.

"Sobre este título" puede pertenecer a otra edición de este libro.

Comprar usado

Condición: Como Nuevo
Unread book in perfect condition...
Ver este artículo

EUR 17,03 gastos de envío desde Estados Unidos de America a España

Destinos, gastos y plazos de envío

Comprar nuevo

Ver este artículo

EUR 5,14 gastos de envío desde Reino Unido a España

Destinos, gastos y plazos de envío

Otras ediciones populares con el mismo título

9781402020285: Resolution of Curve and Surface Singularities in Characteristic Zero: 4 (Algebra and Applications)

Edición Destacada

ISBN 10:  1402020287 ISBN 13:  9781402020285
Editorial: Springer, 2004
Tapa dura

Resultados de la búsqueda para Resolution of Curve and Surface Singularities in Characteris...

Imagen de archivo

Kiyek, K.; Vicente, J.L.
Publicado por Springer, 2010
ISBN 10: 9048165733 ISBN 13: 9789048165735
Nuevo Tapa blanda

Librería: Ria Christie Collections, Uxbridge, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. In. Nº de ref. del artículo: ria9789048165735_new

Contactar al vendedor

Comprar nuevo

EUR 57,96
Convertir moneda
Gastos de envío: EUR 5,14
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

J. L. Vicente
Publicado por Springer Netherlands Dez 2010, 2010
ISBN 10: 9048165733 ISBN 13: 9789048165735
Nuevo Taschenbuch
Impresión bajo demanda

Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The Curves The Point of View of Max Noether Probably the oldest references to the problem of resolution of singularities are found in Max Noether's works on plane curves [cf. [148], [149]]. And probably the origin of the problem was to have a formula to compute the genus of a plane curve. The genus is the most useful birational invariant of a curve in classical projective geometry. It was long known that, for a plane curve of degree n having l m ordinary singular points with respective multiplicities ri, i E {1, . . . , m}, the genus p of the curve is given by the formula = (n - l)(n - 2) _ ~ 'r. (r. _ 1) P 2 2 L. . , -- . Of course, the problem now arises: how to compute the genus of a plane curve having some non-ordinary singularities. This leads to the natural question: can we birationally transform any (singular) plane curve into another one having only ordinary singularities The answer is positive. Let us give a flavor (without proofs) 2 on how Noether did it - To solve the problem, it is enough to consider a special kind of Cremona trans formations, namely quadratic transformations of the projective plane. Let ~ be a linear system of conics with three non-collinear base points r = {Ao, AI, A }, 2 and take a projective frame of the type {Ao, AI, A ; U}. 508 pp. Englisch. Nº de ref. del artículo: 9789048165735

Contactar al vendedor

Comprar nuevo

EUR 53,49
Convertir moneda
Gastos de envío: EUR 11,00
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen del vendedor

K. Kiyek|J.L. Vicente
Publicado por Springer Netherlands, 2010
ISBN 10: 9048165733 ISBN 13: 9789048165735
Nuevo Tapa blanda
Impresión bajo demanda

Librería: moluna, Greven, Alemania

Calificación del vendedor: 4 de 5 estrellas Valoración 4 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. The Curves The Point of View of Max Noether Probably the oldest references to the problem of resolution of singularities are found in Max Noether s works on plane curves [cf. [148], [149]]. And probably the origin of the problem was to have a formula to com. Nº de ref. del artículo: 5820423

Contactar al vendedor

Comprar nuevo

EUR 48,37
Convertir moneda
Gastos de envío: EUR 19,49
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

J. L. Vicente
Publicado por Springer Netherlands, 2010
ISBN 10: 9048165733 ISBN 13: 9789048165735
Nuevo Taschenbuch

Librería: AHA-BUCH GmbH, Einbeck, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - The Curves The Point of View of Max Noether Probably the oldest references to the problem of resolution of singularities are found in Max Noether's works on plane curves [cf. [148], [149]]. And probably the origin of the problem was to have a formula to compute the genus of a plane curve. The genus is the most useful birational invariant of a curve in classical projective geometry. It was long known that, for a plane curve of degree n having l m ordinary singular points with respective multiplicities ri, i E {1, . . . , m}, the genus p of the curve is given by the formula = (n - l)(n - 2) _ ~ 'r. (r. _ 1) P 2 2 L. . , -- . Of course, the problem now arises: how to compute the genus of a plane curve having some non-ordinary singularities. This leads to the natural question: can we birationally transform any (singular) plane curve into another one having only ordinary singularities The answer is positive. Let us give a flavor (without proofs) 2 on how Noether did it - To solve the problem, it is enough to consider a special kind of Cremona trans formations, namely quadratic transformations of the projective plane. Let ~ be a linear system of conics with three non-collinear base points r = {Ao, AI, A }, 2 and take a projective frame of the type {Ao, AI, A ; U}. Nº de ref. del artículo: 9789048165735

Contactar al vendedor

Comprar nuevo

EUR 58,56
Convertir moneda
Gastos de envío: EUR 11,99
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen del vendedor

Kiyek, K.; Vicente, J. L.
Publicado por Springer, 2010
ISBN 10: 9048165733 ISBN 13: 9789048165735
Nuevo Tapa blanda

Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: 11873740-n

Contactar al vendedor

Comprar nuevo

EUR 53,82
Convertir moneda
Gastos de envío: EUR 17,03
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Kiyek, K.; Vicente, J.L.
Publicado por Springer, 2010
ISBN 10: 9048165733 ISBN 13: 9789048165735
Nuevo Tapa blanda

Librería: Best Price, Torrance, CA, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. SUPER FAST SHIPPING. Nº de ref. del artículo: 9789048165735

Contactar al vendedor

Comprar nuevo

EUR 48,26
Convertir moneda
Gastos de envío: EUR 25,55
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen del vendedor

Kiyek, K.; Vicente, J. L.
Publicado por Springer, 2010
ISBN 10: 9048165733 ISBN 13: 9789048165735
Nuevo Tapa blanda

Librería: GreatBookPricesUK, Woodford Green, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: 11873740-n

Contactar al vendedor

Comprar nuevo

EUR 57,95
Convertir moneda
Gastos de envío: EUR 17,18
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

Kiyek, K.; Vicente, J. L.
Publicado por Springer, 2010
ISBN 10: 9048165733 ISBN 13: 9789048165735
Antiguo o usado Tapa blanda

Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 11873740

Contactar al vendedor

Comprar usado

EUR 61,23
Convertir moneda
Gastos de envío: EUR 17,03
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

Kiyek, K.; Vicente, J. L.
Publicado por Springer, 2010
ISBN 10: 9048165733 ISBN 13: 9789048165735
Antiguo o usado Tapa blanda

Librería: GreatBookPricesUK, Woodford Green, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 11873740

Contactar al vendedor

Comprar usado

EUR 65,75
Convertir moneda
Gastos de envío: EUR 17,18
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

J. L. Vicente
ISBN 10: 9048165733 ISBN 13: 9789048165735
Nuevo Taschenbuch

Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. Neuware -The Curves The Point of View of Max Noether Probably the oldest references to the problem of resolution of singularities are found in Max Noether's works on plane curves [cf. [148], [149]]. And probably the origin of the problem was to have a formula to compute the genus of a plane curve. The genus is the most useful birational invariant of a curve in classical projective geometry. It was long known that, for a plane curve of degree n having l m ordinary singular points with respective multiplicities ri, i E {1, . . . , m}, the genus p of the curve is given by the formula = (n - l)(n - 2) _ ~ 'r. (r. _ 1) P 2 2 L. . , ¿¿ . Of course, the problem now arises: how to compute the genus of a plane curve having some non-ordinary singularities. This leads to the natural question: can we birationally transform any (singular) plane curve into another one having only ordinary singularities The answer is positive. Let us give a flavor (without proofs) 2 on how Noether did it ¿ To solve the problem, it is enough to consider a special kind of Cremona trans formations, namely quadratic transformations of the projective plane. Let ~ be a linear system of conics with three non-collinear base points r = {Ao, AI, A }, 2 and take a projective frame of the type {Ao, AI, A ; U}.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 508 pp. Englisch. Nº de ref. del artículo: 9789048165735

Contactar al vendedor

Comprar nuevo

EUR 53,49
Convertir moneda
Gastos de envío: EUR 35,00
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Existen otras 7 copia(s) de este libro

Ver todos los resultados de su búsqueda