To summarize briefly, this book is devoted to an exposition of the foundations of pseudo differential equations theory in non-smooth domains. The elements of such a theory already exist in the literature and can be found in such papers and monographs as [90,95,96,109,115,131,132,134,135,136,146, 163,165,169,170,182,184,214-218]. In this book, we will employ a theory that is based on quite different principles than those used previously. However, precisely one of the standard principles is left without change, the "freezing of coefficients" principle. The first main difference in our exposition begins at the point when the "model problem" appears. Such a model problem for differential equations and differential boundary conditions was first studied in a fundamental paper of V. A. Kondrat'ev [134]. Here also the second main difference appears, in that we consider an already given boundary value problem. In some transformations this boundary value problem was reduced to a boundary value problem with a parameter . -\ in a domain with smooth boundary, followed by application of the earlier results of M. S. Agranovich and M. I. Vishik. In this context some operator-function R('-\) appears, and its poles prevent invertibility; iffor differential operators the function is a polynomial on A, then for pseudo differential operators this dependence on . -\ cannot be defined. Ongoing investigations of different model problems are being carried out with approximately this plan, both for differential and pseudodifferential boundary value problems.
"Sinopsis" puede pertenecer a otra edición de este libro.
To summarize briefly, this book is devoted to an exposition of the foundations of pseudo differential equations theory in non-smooth domains. The elements of such a theory already exist in the literature and can be found in such papers and monographs as [90,95,96,109,115,131,132,134,135,136,146, 163,165,169,170,182,184,214-218]. In this book, we will employ a theory that is based on quite different principles than those used previously. However, precisely one of the standard principles is left without change, the "freezing of coefficients" principle. The first main difference in our exposition begins at the point when the "model problem" appears. Such a model problem for differential equations and differential boundary conditions was first studied in a fundamental paper of V. A. Kondrat'ev [134]. Here also the second main difference appears, in that we consider an already given boundary value problem. In some transformations this boundary value problem was reduced to a boundary value problem with a parameter . -\ in a domain with smooth boundary, followed by application of the earlier results of M. S. Agranovich and M. I. Vishik. In this context some operator-function R('-\) appears, and its poles prevent invertibility; iffor differential operators the function is a polynomial on A, then for pseudo differential operators this dependence on . -\ cannot be defined. Ongoing investigations of different model problems are being carried out with approximately this plan, both for differential and pseudodifferential boundary value problems.
This monograph is devoted to the development of a new approach to studying elliptic differential and integro-differential (pseudodifferential) equations and their boundary problems in non-smooth domains. This approach is based on a special representation of symbols of elliptic operators called wave factorization. In canonical domains, for example, the angle on a plane or a wedge in space, this yields a general solution, and then leads to the statement of a boundary problem. Wave factorization has also been used to obtain explicit formulas for solving some problems in diffraction and elasticity theory.
Audience: This volume will be of interest to mathematicians, engineers, and physicists whose work involves partial differential equations, integral equations, operator theory, elasticity and viscoelasticity, and electromagnetic theory. It can also be recommended as a text for graduate and postgraduate students for courses in singular integral and pseudodifferential equations.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 17,38 gastos de envío desde Reino Unido a España
Destinos, gastos y plazos de envíoEUR 11,00 gastos de envío desde Alemania a España
Destinos, gastos y plazos de envíoLibrería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -To summarize briefly, this book is devoted to an exposition of the foundations of pseudo differential equations theory in non-smooth domains. The elements of such a theory already exist in the literature and can be found in such papers and monographs as [90,95,96,109,115,131,132,134,135,136,146, 163,165,169,170,182,184,214-218]. In this book, we will employ a theory that is based on quite different principles than those used previously. However, precisely one of the standard principles is left without change, the 'freezing of coefficients' principle. The first main difference in our exposition begins at the point when the 'model problem' appears. Such a model problem for differential equations and differential boundary conditions was first studied in a fundamental paper of V. A. Kondrat'ev [134]. Here also the second main difference appears, in that we consider an already given boundary value problem. In some transformations this boundary value problem was reduced to a boundary value problem with a parameter . - in a domain with smooth boundary, followed by application of the earlier results of M. S. Agranovich and M. I. Vishik. In this context some operator-function R('-) appears, and its poles prevent invertibility; iffor differential operators the function is a polynomial on A, then for pseudo differential operators this dependence on . - cannot be defined. Ongoing investigations of different model problems are being carried out with approximately this plan, both for differential and pseudodifferential boundary value problems. 188 pp. Englisch. Nº de ref. del artículo: 9789048155453
Cantidad disponible: 2 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9789048155453_new
Cantidad disponible: Más de 20 disponibles
Librería: moluna, Greven, Alemania
Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. To summarize briefly, this book is devoted to an exposition of the foundations of pseudo differential equations theory in non-smooth domains. The elements of such a theory already exist in the literature and can be found in such papers and monographs as [90. Nº de ref. del artículo: 5819400
Cantidad disponible: Más de 20 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Taschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - To summarize briefly, this book is devoted to an exposition of the foundations of pseudo differential equations theory in non-smooth domains. The elements of such a theory already exist in the literature and can be found in such papers and monographs as [90,95,96,109,115,131,132,134,135,136,146, 163,165,169,170,182,184,214-218]. In this book, we will employ a theory that is based on quite different principles than those used previously. However, precisely one of the standard principles is left without change, the 'freezing of coefficients' principle. The first main difference in our exposition begins at the point when the 'model problem' appears. Such a model problem for differential equations and differential boundary conditions was first studied in a fundamental paper of V. A. Kondrat'ev [134]. Here also the second main difference appears, in that we consider an already given boundary value problem. In some transformations this boundary value problem was reduced to a boundary value problem with a parameter . - in a domain with smooth boundary, followed by application of the earlier results of M. S. Agranovich and M. I. Vishik. In this context some operator-function R('-) appears, and its poles prevent invertibility; iffor differential operators the function is a polynomial on A, then for pseudo differential operators this dependence on . - cannot be defined. Ongoing investigations of different model problems are being carried out with approximately this plan, both for differential and pseudodifferential boundary value problems. Nº de ref. del artículo: 9789048155453
Cantidad disponible: 1 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 11868382-n
Cantidad disponible: Más de 20 disponibles
Librería: Chiron Media, Wallingford, Reino Unido
Paperback. Condición: New. Nº de ref. del artículo: 6666-IUK-9789048155453
Cantidad disponible: 10 disponibles
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
Condición: New. Nº de ref. del artículo: 11868382-n
Cantidad disponible: Más de 20 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. pp. 188. Nº de ref. del artículo: 263105540
Cantidad disponible: 4 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: New. Print on Demand pp. 188 49:B&W 6.14 x 9.21 in or 234 x 156 mm (Royal 8vo) Perfect Bound on White w/Gloss Lam. Nº de ref. del artículo: 5823707
Cantidad disponible: 4 disponibles
Librería: Revaluation Books, Exeter, Reino Unido
Paperback. Condición: Brand New. 192 pages. 9.00x6.00x0.43 inches. In Stock. Nº de ref. del artículo: x-9048155452
Cantidad disponible: 2 disponibles