To our wives, Masha and Marian Interest in the so-called completely integrable systems with infinite num ber of degrees of freedom was aroused immediately after publication of the famous series of papers by Gardner, Greene, Kruskal, Miura, and Zabusky [75, 77, 96, 18, 66, 19J (see also [76]) on striking properties of the Korteweg-de Vries (KdV) equation. It soon became clear that systems of such a kind possess a number of characteristic properties, such as infinite series of symmetries and/or conservation laws, inverse scattering problem formulation, L - A pair representation, existence of prolongation structures, etc. And though no satisfactory definition of complete integrability was yet invented, a need of testing a particular system for these properties appeared. Probably one of the most efficient tests of this kind was first proposed by Lenard [19]' who constructed a recursion operator for symmetries of the KdV equation. It was a strange operator, in a sense: being formally integro-differential, its action on the first classical symmetry (x-translation) was well-defined and produced the entire series of higher KdV equations; but applied to the scaling symmetry, it gave expressions containing terms of the type J u dx which had no adequate interpretation in the framework of the existing theories. It is not surprising that P. Olver wrote "The de duction of the form of the recursion operator (if it exists) requires a certain amount of inspired guesswork. . . " [80, p.
"Sinopsis" puede pertenecer a otra edición de este libro.
To our wives, Masha and Marian Interest in the so-called completely integrable systems with infinite num ber of degrees of freedom was aroused immediately after publication of the famous series of papers by Gardner, Greene, Kruskal, Miura, and Zabusky [75, 77, 96, 18, 66, 19J (see also [76]) on striking properties of the Korteweg-de Vries (KdV) equation. It soon became clear that systems of such a kind possess a number of characteristic properties, such as infinite series of symmetries and/or conservation laws, inverse scattering problem formulation, L - A pair representation, existence of prolongation structures, etc. And though no satisfactory definition of complete integrability was yet invented, a need of testing a particular system for these properties appeared. Probably one of the most efficient tests of this kind was first proposed by Lenard [19]' who constructed a recursion operator for symmetries of the KdV equation. It was a strange operator, in a sense: being formally integro-differential, its action on the first classical symmetry (x-translation) was well-defined and produced the entire series of higher KdV equations; but applied to the scaling symmetry, it gave expressions containing terms of the type J u dx which had no adequate interpretation in the framework of the existing theories. It is not surprising that P. Olver wrote "The de duction of the form of the recursion operator (if it exists) requires a certain amount of inspired guesswork. . . " [80, p.
This book is a detailed exposition of algebraic and geometrical aspects related to the theory of symmetries and recursion operators for nonlinear partial differential equations (PDE), both in classical and in super, or graded, versions. It contains an original theory of Frölicher-Nijenhuis brackets which is the basis for a special cohomological theory naturally related to the equation structure. This theory gives rise to infinitesimal deformations of PDE, recursion operators being a particular case of such deformations.
Efficient computational formulas for constructing recursion operators are deduced and, in combination with the theory of coverings, lead to practical algorithms of computations. Using these techniques, previously unknown recursion operators (together with the corresponding infinite series of symmetries) are constructed. In particular, complete integrability of some superequations of mathematical physics (Korteweg-de Vries, nonlinear Schrödinger equations, etc.) is proved.
Audience: The book will be of interest to mathematicians and physicists specializing in geometry of differential equations, integrable systems and related topics.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 17,04 gastos de envío desde Estados Unidos de America a España
Destinos, gastos y plazos de envíoEUR 19,49 gastos de envío desde Alemania a España
Destinos, gastos y plazos de envíoLibrería: moluna, Greven, Alemania
Condición: New. Nº de ref. del artículo: 5819316
Cantidad disponible: Más de 20 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9789048154609_new
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 11871539-n
Cantidad disponible: 15 disponibles
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -To our wives, Masha and Marian Interest in the so-called completely integrable systems with infinite num ber of degrees of freedom was aroused immediately after publication of the famous series of papers by Gardner, Greene, Kruskal, Miura, and Zabusky [75, 77, 96, 18, 66, 19J (see also [76]) on striking properties of the Korteweg-de Vries (KdV) equation. It soon became clear that systems of such a kind possess a number of characteristic properties, such as infinite series of symmetries and/or conservation laws, inverse scattering problem formulation, L - A pair representation, existence of prolongation structures, etc. And though no satisfactory definition of complete integrability was yet invented, a need of testing a particular system for these properties appeared. Probably one of the most efficient tests of this kind was first proposed by Lenard [19]' who constructed a recursion operator for symmetries of the KdV equation. It was a strange operator, in a sense: being formally integro-differential, its action on the first classical symmetry (x-translation) was well-defined and produced the entire series of higher KdV equations; but applied to the scaling symmetry, it gave expressions containing terms of the type J u dx which had no adequate interpretation in the framework of the existing theories. It is not surprising that P. Olver wrote 'The de duction of the form of the recursion operator (if it exists) requires a certain amount of inspired guesswork. . . ' [80, p. 404 pp. Englisch. Nº de ref. del artículo: 9789048154609
Cantidad disponible: 2 disponibles
Librería: Best Price, Torrance, CA, Estados Unidos de America
Condición: New. SUPER FAST SHIPPING. Nº de ref. del artículo: 9789048154609
Cantidad disponible: 2 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Taschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - To our wives, Masha and Marian Interest in the so-called completely integrable systems with infinite num ber of degrees of freedom was aroused immediately after publication of the famous series of papers by Gardner, Greene, Kruskal, Miura, and Zabusky [75, 77, 96, 18, 66, 19J (see also [76]) on striking properties of the Korteweg-de Vries (KdV) equation. It soon became clear that systems of such a kind possess a number of characteristic properties, such as infinite series of symmetries and/or conservation laws, inverse scattering problem formulation, L - A pair representation, existence of prolongation structures, etc. And though no satisfactory definition of complete integrability was yet invented, a need of testing a particular system for these properties appeared. Probably one of the most efficient tests of this kind was first proposed by Lenard [19]' who constructed a recursion operator for symmetries of the KdV equation. It was a strange operator, in a sense: being formally integro-differential, its action on the first classical symmetry (x-translation) was well-defined and produced the entire series of higher KdV equations; but applied to the scaling symmetry, it gave expressions containing terms of the type J u dx which had no adequate interpretation in the framework of the existing theories. It is not surprising that P. Olver wrote 'The de duction of the form of the recursion operator (if it exists) requires a certain amount of inspired guesswork. . . ' [80, p. Nº de ref. del artículo: 9789048154609
Cantidad disponible: 1 disponibles
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - Print on Demand Titel. Neuware -To our wives, Masha and Marian Interest in the so-called completely integrable systems with infinite num ber of degrees of freedom was aroused immediately after publication of the famous series of papers by Gardner, Greene, Kruskal, Miura, and Zabusky [75, 77, 96, 18, 66, 19J (see also [76]) on striking properties of the Korteweg-de Vries (KdV) equation. It soon became clear that systems of such a kind possess a number of characteristic properties, such as infinite series of symmetries and/or conservation laws, inverse scattering problem formulation, L - A pair representation, existence of prolongation structures, etc. And though no satisfactory definition of complete integrability was yet invented, a need of testing a particular system for these properties appeared. Probably one of the most efficient tests of this kind was first proposed by Lenard [19]' who constructed a recursion operator for symmetries of the KdV equation. It was a strange operator, in a sense: being formally integro-differential, its action on the first classical symmetry (x-translation) was well-defined and produced the entire series of higher KdV equations; but applied to the scaling symmetry, it gave expressions containing terms of the type J u dx which had no adequate interpretation in the framework of the existing theories. It is not surprising that P. Olver wrote 'The de duction of the form of the recursion operator (if it exists) requires a certain amount of inspired guesswork. . . ' [80, p.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 404 pp. Englisch. Nº de ref. del artículo: 9789048154609
Cantidad disponible: 1 disponibles
Librería: California Books, Miami, FL, Estados Unidos de America
Condición: New. Nº de ref. del artículo: I-9789048154609
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 11871539
Cantidad disponible: 15 disponibles
Librería: Grand Eagle Retail, Mason, OH, Estados Unidos de America
Paperback. Condición: new. Paperback. This book is a detailed exposition of algebraic and geometrical aspects related to the theory of symmetries and recursion operators for nonlinear partial differential equations (PDE), both in classical and in super, or graded, versions. It contains an original theory of Frolicher-Nijenhuis brackets which is the basis for a special cohomological theory naturally related to the equation structure. This theory gives rise to infinitesimal deformations of PDE, recursion operators being a particular case of such deformations. Efficient computational formulas for constructing recursion operators are deduced and, in combination with the theory of coverings, lead to practical algorithms of computations. Using these techniques, previously unknown recursion operators (together with the corresponding infinite series of symmetries) are constructed. In particular, complete integrability of some superequations of mathematical physics (Korteweg-de Vries, nonlinear Schrodinger equations, etc.) is proved. Audience: The book will be of interest to mathematicians and physicists specializing in geometry of differential equations, integrable systems and related topics. To our wives, Masha and Marian Interest in the so-called completely integrable systems with infinite numA ber of degrees of freedom was aroused immediately after publication of the famous series of papers by Gardner, Greene, Kruskal, Miura, and Zabusky [75, 77, 96, 18, 66, 19J (see also [76]) on striking properties of the Korteweg-de Vries (KdV) equation. It soon became clear that systems of such a kind possess a number of characteristic properties, such as infinite series of symmetries and/or conservation laws, inverse scattering problem formulation, L - A pair representation, existence of prolongation structures, etc. And though no satisfactory definition of complete integrability was yet invented, a need of testing a particular system for these properties appeared. Probably one of the most efficient tests of this kind was first proposed by Lenard [19]' who constructed a recursion operator for symmetries of the KdV equation. It was a strange operator, in a sense: being formally integro-differential, its action on the first classical symmetry (x-translation) was well-defined and produced the entire series of higher KdV equations; but applied to the scaling symmetry, it gave expressions containing terms of the type J u dx which had no adequate interpretation in the framework of the existing theories. It is not surprising that P. Olver wrote "The deA duction of the form of the recursion operator (if it exists) requires a certain amount of inspired guesswork. . . " [80, Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Nº de ref. del artículo: 9789048154609
Cantidad disponible: 1 disponibles