Artículos relacionados a Symmetries and Recursion Operators for Classical and...

Symmetries and Recursion Operators for Classical and Supersymmetric Differential Equations: 507 (Mathematics and Its Applications) - Tapa blanda

 
9789048154609: Symmetries and Recursion Operators for Classical and Supersymmetric Differential Equations: 507 (Mathematics and Its Applications)

Sinopsis

To our wives, Masha and Marian Interest in the so-called completely integrable systems with infinite num­ ber of degrees of freedom was aroused immediately after publication of the famous series of papers by Gardner, Greene, Kruskal, Miura, and Zabusky [75, 77, 96, 18, 66, 19J (see also [76]) on striking properties of the Korteweg-de Vries (KdV) equation. It soon became clear that systems of such a kind possess a number of characteristic properties, such as infinite series of symmetries and/or conservation laws, inverse scattering problem formulation, L - A pair representation, existence of prolongation structures, etc. And though no satisfactory definition of complete integrability was yet invented, a need of testing a particular system for these properties appeared. Probably one of the most efficient tests of this kind was first proposed by Lenard [19]' who constructed a recursion operator for symmetries of the KdV equation. It was a strange operator, in a sense: being formally integro-differential, its action on the first classical symmetry (x-translation) was well-defined and produced the entire series of higher KdV equations; but applied to the scaling symmetry, it gave expressions containing terms of the type J u dx which had no adequate interpretation in the framework of the existing theories. It is not surprising that P. Olver wrote "The de­ duction of the form of the recursion operator (if it exists) requires a certain amount of inspired guesswork. . . " [80, p.

"Sinopsis" puede pertenecer a otra edición de este libro.

Reseña del editor

To our wives, Masha and Marian Interest in the so-called completely integrable systems with infinite num­ ber of degrees of freedom was aroused immediately after publication of the famous series of papers by Gardner, Greene, Kruskal, Miura, and Zabusky [75, 77, 96, 18, 66, 19J (see also [76]) on striking properties of the Korteweg-de Vries (KdV) equation. It soon became clear that systems of such a kind possess a number of characteristic properties, such as infinite series of symmetries and/or conservation laws, inverse scattering problem formulation, L - A pair representation, existence of prolongation structures, etc. And though no satisfactory definition of complete integrability was yet invented, a need of testing a particular system for these properties appeared. Probably one of the most efficient tests of this kind was first proposed by Lenard [19]' who constructed a recursion operator for symmetries of the KdV equation. It was a strange operator, in a sense: being formally integro-differential, its action on the first classical symmetry (x-translation) was well-defined and produced the entire series of higher KdV equations; but applied to the scaling symmetry, it gave expressions containing terms of the type J u dx which had no adequate interpretation in the framework of the existing theories. It is not surprising that P. Olver wrote "The de­ duction of the form of the recursion operator (if it exists) requires a certain amount of inspired guesswork. . . " [80, p.

Reseña del editor

This book is a detailed exposition of algebraic and geometrical aspects related to the theory of symmetries and recursion operators for nonlinear partial differential equations (PDE), both in classical and in super, or graded, versions. It contains an original theory of Frölicher-Nijenhuis brackets which is the basis for a special cohomological theory naturally related to the equation structure. This theory gives rise to infinitesimal deformations of PDE, recursion operators being a particular case of such deformations.
Efficient computational formulas for constructing recursion operators are deduced and, in combination with the theory of coverings, lead to practical algorithms of computations. Using these techniques, previously unknown recursion operators (together with the corresponding infinite series of symmetries) are constructed. In particular, complete integrability of some superequations of mathematical physics (Korteweg-de Vries, nonlinear Schrödinger equations, etc.) is proved.
Audience: The book will be of interest to mathematicians and physicists specializing in geometry of differential equations, integrable systems and related topics.

"Sobre este título" puede pertenecer a otra edición de este libro.

Comprar usado

Condición: Como Nuevo
Unread book in perfect condition...
Ver este artículo

EUR 17,04 gastos de envío desde Estados Unidos de America a España

Destinos, gastos y plazos de envío

Comprar nuevo

Ver este artículo

EUR 19,49 gastos de envío desde Alemania a España

Destinos, gastos y plazos de envío

Resultados de la búsqueda para Symmetries and Recursion Operators for Classical and...

Imagen del vendedor

I.S. Krasil\'shchik|P.H. Kersten
Publicado por Springer Netherlands, 2010
ISBN 10: 904815460X ISBN 13: 9789048154609
Nuevo Tapa blanda

Librería: moluna, Greven, Alemania

Calificación del vendedor: 4 de 5 estrellas Valoración 4 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: 5819316

Contactar al vendedor

Comprar nuevo

EUR 136,16
Convertir moneda
Gastos de envío: EUR 19,49
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Krasil'shchik, I.S.; Kersten, P.H.
Publicado por Springer, 2010
ISBN 10: 904815460X ISBN 13: 9789048154609
Nuevo Tapa blanda

Librería: Ria Christie Collections, Uxbridge, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. In. Nº de ref. del artículo: ria9789048154609_new

Contactar al vendedor

Comprar nuevo

EUR 158,70
Convertir moneda
Gastos de envío: EUR 5,16
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

Krasil'Shchik, I. S.; Kersten, P. H.
Publicado por Springer, 2010
ISBN 10: 904815460X ISBN 13: 9789048154609
Nuevo Tapa blanda

Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: 11871539-n

Contactar al vendedor

Comprar nuevo

EUR 153,75
Convertir moneda
Gastos de envío: EUR 17,04
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: 15 disponibles

Añadir al carrito

Imagen del vendedor

P. H. Kersten
Publicado por Springer Netherlands Dez 2010, 2010
ISBN 10: 904815460X ISBN 13: 9789048154609
Nuevo Taschenbuch
Impresión bajo demanda

Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -To our wives, Masha and Marian Interest in the so-called completely integrable systems with infinite num ber of degrees of freedom was aroused immediately after publication of the famous series of papers by Gardner, Greene, Kruskal, Miura, and Zabusky [75, 77, 96, 18, 66, 19J (see also [76]) on striking properties of the Korteweg-de Vries (KdV) equation. It soon became clear that systems of such a kind possess a number of characteristic properties, such as infinite series of symmetries and/or conservation laws, inverse scattering problem formulation, L - A pair representation, existence of prolongation structures, etc. And though no satisfactory definition of complete integrability was yet invented, a need of testing a particular system for these properties appeared. Probably one of the most efficient tests of this kind was first proposed by Lenard [19]' who constructed a recursion operator for symmetries of the KdV equation. It was a strange operator, in a sense: being formally integro-differential, its action on the first classical symmetry (x-translation) was well-defined and produced the entire series of higher KdV equations; but applied to the scaling symmetry, it gave expressions containing terms of the type J u dx which had no adequate interpretation in the framework of the existing theories. It is not surprising that P. Olver wrote 'The de duction of the form of the recursion operator (if it exists) requires a certain amount of inspired guesswork. . . ' [80, p. 404 pp. Englisch. Nº de ref. del artículo: 9789048154609

Contactar al vendedor

Comprar nuevo

EUR 160,49
Convertir moneda
Gastos de envío: EUR 11,00
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen de archivo

Krasil'shchik, I.S.; Kersten, P.H.
Publicado por Springer, 2010
ISBN 10: 904815460X ISBN 13: 9789048154609
Nuevo Tapa blanda

Librería: Best Price, Torrance, CA, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. SUPER FAST SHIPPING. Nº de ref. del artículo: 9789048154609

Contactar al vendedor

Comprar nuevo

EUR 148,22
Convertir moneda
Gastos de envío: EUR 25,55
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen del vendedor

P. H. Kersten
Publicado por Springer Netherlands, 2010
ISBN 10: 904815460X ISBN 13: 9789048154609
Nuevo Taschenbuch

Librería: AHA-BUCH GmbH, Einbeck, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - To our wives, Masha and Marian Interest in the so-called completely integrable systems with infinite num ber of degrees of freedom was aroused immediately after publication of the famous series of papers by Gardner, Greene, Kruskal, Miura, and Zabusky [75, 77, 96, 18, 66, 19J (see also [76]) on striking properties of the Korteweg-de Vries (KdV) equation. It soon became clear that systems of such a kind possess a number of characteristic properties, such as infinite series of symmetries and/or conservation laws, inverse scattering problem formulation, L - A pair representation, existence of prolongation structures, etc. And though no satisfactory definition of complete integrability was yet invented, a need of testing a particular system for these properties appeared. Probably one of the most efficient tests of this kind was first proposed by Lenard [19]' who constructed a recursion operator for symmetries of the KdV equation. It was a strange operator, in a sense: being formally integro-differential, its action on the first classical symmetry (x-translation) was well-defined and produced the entire series of higher KdV equations; but applied to the scaling symmetry, it gave expressions containing terms of the type J u dx which had no adequate interpretation in the framework of the existing theories. It is not surprising that P. Olver wrote 'The de duction of the form of the recursion operator (if it exists) requires a certain amount of inspired guesswork. . . ' [80, p. Nº de ref. del artículo: 9789048154609

Contactar al vendedor

Comprar nuevo

EUR 164,49
Convertir moneda
Gastos de envío: EUR 11,99
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen del vendedor

P. H. Kersten
ISBN 10: 904815460X ISBN 13: 9789048154609
Nuevo Taschenbuch
Impresión bajo demanda

Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. This item is printed on demand - Print on Demand Titel. Neuware -To our wives, Masha and Marian Interest in the so-called completely integrable systems with infinite num ber of degrees of freedom was aroused immediately after publication of the famous series of papers by Gardner, Greene, Kruskal, Miura, and Zabusky [75, 77, 96, 18, 66, 19J (see also [76]) on striking properties of the Korteweg-de Vries (KdV) equation. It soon became clear that systems of such a kind possess a number of characteristic properties, such as infinite series of symmetries and/or conservation laws, inverse scattering problem formulation, L - A pair representation, existence of prolongation structures, etc. And though no satisfactory definition of complete integrability was yet invented, a need of testing a particular system for these properties appeared. Probably one of the most efficient tests of this kind was first proposed by Lenard [19]' who constructed a recursion operator for symmetries of the KdV equation. It was a strange operator, in a sense: being formally integro-differential, its action on the first classical symmetry (x-translation) was well-defined and produced the entire series of higher KdV equations; but applied to the scaling symmetry, it gave expressions containing terms of the type J u dx which had no adequate interpretation in the framework of the existing theories. It is not surprising that P. Olver wrote 'The de duction of the form of the recursion operator (if it exists) requires a certain amount of inspired guesswork. . . ' [80, p.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 404 pp. Englisch. Nº de ref. del artículo: 9789048154609

Contactar al vendedor

Comprar nuevo

EUR 160,49
Convertir moneda
Gastos de envío: EUR 35,00
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

Krasil'shchik, I.S.; Kersten, P.H.
Publicado por Springer, 2010
ISBN 10: 904815460X ISBN 13: 9789048154609
Nuevo Tapa blanda

Librería: California Books, Miami, FL, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: I-9789048154609

Contactar al vendedor

Comprar nuevo

EUR 193,12
Convertir moneda
Gastos de envío: EUR 6,82
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Krasil'Shchik, I. S.; Kersten, P. H.
Publicado por Springer, 2010
ISBN 10: 904815460X ISBN 13: 9789048154609
Antiguo o usado Tapa blanda

Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 11871539

Contactar al vendedor

Comprar usado

EUR 183,86
Convertir moneda
Gastos de envío: EUR 17,04
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: 15 disponibles

Añadir al carrito

Imagen de archivo

I.S. Krasil'shchik
Publicado por Springer, Dordrecht, 2010
ISBN 10: 904815460X ISBN 13: 9789048154609
Nuevo Paperback Original o primera edición

Librería: Grand Eagle Retail, Mason, OH, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Paperback. Condición: new. Paperback. This book is a detailed exposition of algebraic and geometrical aspects related to the theory of symmetries and recursion operators for nonlinear partial differential equations (PDE), both in classical and in super, or graded, versions. It contains an original theory of Frolicher-Nijenhuis brackets which is the basis for a special cohomological theory naturally related to the equation structure. This theory gives rise to infinitesimal deformations of PDE, recursion operators being a particular case of such deformations. Efficient computational formulas for constructing recursion operators are deduced and, in combination with the theory of coverings, lead to practical algorithms of computations. Using these techniques, previously unknown recursion operators (together with the corresponding infinite series of symmetries) are constructed. In particular, complete integrability of some superequations of mathematical physics (Korteweg-de Vries, nonlinear Schrodinger equations, etc.) is proved. Audience: The book will be of interest to mathematicians and physicists specializing in geometry of differential equations, integrable systems and related topics. To our wives, Masha and Marian Interest in the so-called completely integrable systems with infinite numA ber of degrees of freedom was aroused immediately after publication of the famous series of papers by Gardner, Greene, Kruskal, Miura, and Zabusky [75, 77, 96, 18, 66, 19J (see also [76]) on striking properties of the Korteweg-de Vries (KdV) equation. It soon became clear that systems of such a kind possess a number of characteristic properties, such as infinite series of symmetries and/or conservation laws, inverse scattering problem formulation, L - A pair representation, existence of prolongation structures, etc. And though no satisfactory definition of complete integrability was yet invented, a need of testing a particular system for these properties appeared. Probably one of the most efficient tests of this kind was first proposed by Lenard [19]' who constructed a recursion operator for symmetries of the KdV equation. It was a strange operator, in a sense: being formally integro-differential, its action on the first classical symmetry (x-translation) was well-defined and produced the entire series of higher KdV equations; but applied to the scaling symmetry, it gave expressions containing terms of the type J u dx which had no adequate interpretation in the framework of the existing theories. It is not surprising that P. Olver wrote "The deA duction of the form of the recursion operator (if it exists) requires a certain amount of inspired guesswork. . . " [80, Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Nº de ref. del artículo: 9789048154609

Contactar al vendedor

Comprar nuevo

EUR 156,08
Convertir moneda
Gastos de envío: EUR 63,92
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Existen otras 5 copia(s) de este libro

Ver todos los resultados de su búsqueda