Ordinary differential control thPory (the classical theory) studies input/output re lations defined by systems of ordinary differential equations (ODE). The various con cepts that can be introduced (controllability, observability, invertibility, etc. ) must be tested on formal objects (matrices, vector fields, etc. ) by means of formal operations (multiplication, bracket, rank, etc. ), but without appealing to the explicit integration (search for trajectories, etc. ) of the given ODE. Many partial results have been re cently unified by means of new formal methods coming from differential geometry and differential algebra. However, certain problems (invariance, equivalence, linearization, etc. ) naturally lead to systems of partial differential equations (PDE). More generally, partial differential control theory studies input/output relations defined by systems of PDE (mechanics, thermodynamics, hydrodynamics, plasma physics, robotics, etc. ). One of the aims of this book is to extend the preceding con cepts to this new situation, where, of course, functional analysis and/or a dynamical system approach cannot be used. A link will be exhibited between this domain of applied mathematics and the famous ’Backlund problem’, existing in the study of solitary waves or solitons. In particular, we shall show how the methods of differ ential elimination presented here will allow us to determine compatibility conditions on input and/or output as a better understanding of the foundations of control the ory. At the same time we shall unify differential geometry and differential algebra in a new framework, called differential algebraic geometry.
"Sinopsis" puede pertenecer a otra edición de este libro.
Ordinary differential control thPory (the classical theory) studies input/output re lations defined by systems of ordinary differential equations (ODE). The various con cepts that can be introduced (controllability, observability, invertibility, etc. ) must be tested on formal objects (matrices, vector fields, etc. ) by means of formal operations (multiplication, bracket, rank, etc. ), but without appealing to the explicit integration (search for trajectories, etc. ) of the given ODE. Many partial results have been re cently unified by means of new formal methods coming from differential geometry and differential algebra. However, certain problems (invariance, equivalence, linearization, etc. ) naturally lead to systems of partial differential equations (PDE). More generally, partial differential control theory studies input/output relations defined by systems of PDE (mechanics, thermodynamics, hydrodynamics, plasma physics, robotics, etc. ). One of the aims of this book is to extend the preceding con cepts to this new situation, where, of course, functional analysis and/or a dynamical system approach cannot be used. A link will be exhibited between this domain of applied mathematics and the famous 'Backlund problem', existing in the study of solitary waves or solitons. In particular, we shall show how the methods of differ ential elimination presented here will allow us to determine compatibility conditions on input and/or output as a better understanding of the foundations of control the ory. At the same time we shall unify differential geometry and differential algebra in a new framework, called differential algebraic geometry.
The formal theory of systems of partial differential equations (PDEs) was developed by D.C. Spencer in the U.S.A. during 1960--1975; it studies the solution spaces of systems of PDEs without especially integrating them. It also allows the study of Lie pseudogroups, i.e. groups of transformation solutions of systems of PDEs. Although this work supersedes the classical approaches of M. Janet and E. Cartan, it is still largely unknown by mathematicians and has never been used by physicists.
This book provides a self-contained introduction to these methods, with illustrations and specific examples coming from many branches of physics, the engineering sciences and applied mathematics. The algorithms involved are presented in a way that allows the use of computer algebra for the intrinsic study of nonlinear PDEs. The book also for the first time presents the group-theoretical unification of the finite element methods for elasticity, heat and electromagnetism. The book contains the material of an intensive course which has been given many times with much success throughout Europe, and can be used for a one-year course at graduate level.
For researchers in mathematics, mathematical physics, computer algebra, control theory and theoretical mechanics.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 2,26 gastos de envío en Estados Unidos de America
Destinos, gastos y plazos de envíoEUR 3,41 gastos de envío en Estados Unidos de America
Destinos, gastos y plazos de envíoLibrería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
Condición: New. Nº de ref. del artículo: ABLIING23Apr0316110336001
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 19106610-n
Cantidad disponible: 15 disponibles
Librería: Grand Eagle Retail, Mason, OH, Estados Unidos de America
Paperback. Condición: new. Paperback. The formal theory of systems of partial differential equations (PDEs) was developed by D.C. Spencer in the U.S.A. during 1960--1975; it studies the solution spaces of systems of PDEs without especially integrating them. It also allows the study of Lie pseudogroups, i.e. groups of transformation solutions of systems of PDEs. Although this work supersedes the classical approaches of M. Janet and E. Cartan, it is still largely unknown by mathematicians and has never been used by physicists. This book provides a self-contained introduction to these methods, with illustrations and specific examples coming from many branches of physics, the engineering sciences and applied mathematics. The algorithms involved are presented in a way that allows the use of computer algebra for the intrinsic study of nonlinear PDEs. The book also for the first time presents the group-theoretical unification of the finite element methods for elasticity, heat and electromagnetism. The book contains the material of an intensive course which has been given many times with much success throughout Europe, and can be used for a one-year course at graduate level.For researchers in mathematics, mathematical physics, computer algebra, control theory and theoretical mechanics. Ordinary differential control thPory (the classical theory) studies input/output re lations defined by systems of ordinary differential equations (ODE). At the same time we shall unify differential geometry and differential algebra in a new framework, called differential algebraic geometry. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Nº de ref. del artículo: 9789048144327
Cantidad disponible: 1 disponibles
Librería: California Books, Miami, FL, Estados Unidos de America
Condición: New. Nº de ref. del artículo: I-9789048144327
Cantidad disponible: Más de 20 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9789048144327_new
Cantidad disponible: Más de 20 disponibles
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Ordinary differential control thPory (the classical theory) studies input/output re lations defined by systems of ordinary differential equations (ODE). The various con cepts that can be introduced (controllability, observability, invertibility, etc. ) must be tested on formal objects (matrices, vector fields, etc. ) by means of formal operations (multiplication, bracket, rank, etc. ), but without appealing to the explicit integration (search for trajectories, etc. ) of the given ODE. Many partial results have been re cently unified by means of new formal methods coming from differential geometry and differential algebra. However, certain problems (invariance, equivalence, linearization, etc. ) naturally lead to systems of partial differential equations (PDE). More generally, partial differential control theory studies input/output relations defined by systems of PDE (mechanics, thermodynamics, hydrodynamics, plasma physics, robotics, etc. ). One of the aims of this book is to extend the preceding con cepts to this new situation, where, of course, functional analysis and/or a dynamical system approach cannot be used. A link will be exhibited between this domain of applied mathematics and the famous 'Backlund problem', existing in the study of solitary waves or solitons. In particular, we shall show how the methods of differ ential elimination presented here will allow us to determine compatibility conditions on input and/or output as a better understanding of the foundations of control the ory. At the same time we shall unify differential geometry and differential algebra in a new framework, called differential algebraic geometry. 492 pp. Englisch. Nº de ref. del artículo: 9789048144327
Cantidad disponible: 2 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. pp. 488. Nº de ref. del artículo: 263103382
Cantidad disponible: 4 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: New. Print on Demand pp. 488 49:B&W 6.14 x 9.21 in or 234 x 156 mm (Royal 8vo) Perfect Bound on White w/Gloss Lam. Nº de ref. del artículo: 5825865
Cantidad disponible: 4 disponibles
Librería: Biblios, Frankfurt am main, HESSE, Alemania
Condición: New. PRINT ON DEMAND pp. 488. Nº de ref. del artículo: 183103388
Cantidad disponible: 4 disponibles
Librería: moluna, Greven, Alemania
Condición: New. Nº de ref. del artículo: 5818295
Cantidad disponible: Más de 20 disponibles