Artículos relacionados a Google JAX Cookbook: Perform machine learning and numerical...

Google JAX Cookbook: Perform machine learning and numerical computing with combined capabilities of TensorFlow and NumPy - Tapa blanda

 
9788197950414: Google JAX Cookbook: Perform machine learning and numerical computing with combined capabilities of TensorFlow and NumPy

Sinopsis

This is the practical, solution-oriented book for every data scientists, machine learning engineers, and AI engineers to utilize the most of Google JAX for efficient and advanced machine learning. It covers essential tasks, troubleshooting scenarios, and optimization techniques to address common challenges encountered while working with JAX across machine learning and numerical computing projects.

The book starts with the move from NumPy to JAX. It introduces the best ways to speed up computations, handle data types, generate random numbers, and perform in-place operations. It then shows you how to use profiling techniques to monitor computation time and device memory, helping you to optimize training and performance. The debugging section provides clear and effective strategies for resolving common runtime issues, including shape mismatches, NaNs, and control flow errors. The book goes on to show you how to master Pytrees for data manipulation, integrate external functions through the Foreign Function Interface (FFI), and utilize advanced serialization and type promotion techniques for stable computations.

If you want to optimize training processes, this book has you covered. It includes recipes for efficient data loading, building custom neural networks, implementing mixed precision, and tracking experiments with Penzai. You'll learn how to visualize model performance and monitor metrics to assess training progress effectively. The recipes in this book tackle real-world scenarios and give users the power to fix issues and fine-tune models quickly.


Key Learnings

  • Get your calculations done faster by moving from NumPy to JAX's optimized framework.
  • Make your training pipelines more efficient by profiling how long things take and how much memory they use.
  • Use debugging techniques to fix runtime issues like shape mismatches and numerical instability.
  • Get to grips with Pytrees for managing complex, nested data structures across various machine learning tasks.
  • Use JAX's Foreign Function Interface (FFI) to bring in external functions and give your computational capabilities a boost.
  • Take advantage of mixed-precision training to speed up neural network computations without sacrificing model accuracy.
  • Keep your experiments on track with Penzai. This lets you reproduce results and monitor key metrics.
  • Use advanced visualization techniques, like confusion matrices and learning curves, to make model evaluation more effective.
  • Create your own neural networks and optimizers directly in JAX so you have full control of the architecture.
  • Use serialization techniques to save, load, and transfer models and training checkpoints efficiently.

Table of Content

  1. Transition NumPy to JAX
  2. Profiling Computation and Device Memory
  3. Debugging Runtime Values and Errors
  4. Mastering Pytrees for Data Structures
  5. Exporting and Serialization
  6. Type Promotion Semantics and Mixed Precision
  7. Integrating Foreign Functions (FFI)
  8. Training Neural Networks with JAX

"Sinopsis" puede pertenecer a otra edición de este libro.

Comprar usado

Condición: Como Nuevo
Unread book in perfect condition...
Ver este artículo

EUR 16,97 gastos de envío desde Estados Unidos de America a España

Destinos, gastos y plazos de envío

Comprar nuevo

Ver este artículo

EUR 10,61 gastos de envío desde Estados Unidos de America a España

Destinos, gastos y plazos de envío

Resultados de la búsqueda para Google JAX Cookbook: Perform machine learning and numerical...

Imagen del vendedor

Quent, Zephyr
Publicado por Gitforgits 10/30/2024, 2024
ISBN 10: 8197950415 ISBN 13: 9788197950414
Nuevo Paperback or Softback

Librería: BargainBookStores, Grand Rapids, MI, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Paperback or Softback. Condición: New. Google JAX Cookbook: Perform machine learning and numerical computing with combined capabilities of TensorFlow and NumPy 0.97. Book. Nº de ref. del artículo: BBS-9788197950414

Contactar al vendedor

Comprar nuevo

EUR 46,30
Convertir moneda
Gastos de envío: EUR 10,61
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: 5 disponibles

Añadir al carrito

Imagen de archivo

Quent, Zephyr
Publicado por GitforGits, 2024
ISBN 10: 8197950415 ISBN 13: 9788197950414
Nuevo Tapa blanda

Librería: California Books, Miami, FL, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: I-9788197950414

Contactar al vendedor

Comprar nuevo

EUR 50,72
Convertir moneda
Gastos de envío: EUR 6,79
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Unknown, Unknown
ISBN 10: 8197950415 ISBN 13: 9788197950414
Nuevo

Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: 49264723-n

Contactar al vendedor

Comprar nuevo

EUR 43,98
Convertir moneda
Gastos de envío: EUR 16,97
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Unknown, Unknown
ISBN 10: 8197950415 ISBN 13: 9788197950414
Antiguo o usado

Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 49264723

Contactar al vendedor

Comprar usado

EUR 49,36
Convertir moneda
Gastos de envío: EUR 16,97
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Quent, Zephyr
Publicado por GitforGits, 2024
ISBN 10: 8197950415 ISBN 13: 9788197950414
Nuevo Tapa blanda

Librería: Ria Christie Collections, Uxbridge, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. In. Nº de ref. del artículo: ria9788197950414_new

Contactar al vendedor

Comprar nuevo

EUR 62,28
Convertir moneda
Gastos de envío: EUR 5,20
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Unknown, Unknown
ISBN 10: 8197950415 ISBN 13: 9788197950414
Antiguo o usado

Librería: GreatBookPricesUK, Woodford Green, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 49264723

Contactar al vendedor

Comprar usado

EUR 56,45
Convertir moneda
Gastos de envío: EUR 17,38
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Unknown, Unknown
ISBN 10: 8197950415 ISBN 13: 9788197950414
Nuevo

Librería: GreatBookPricesUK, Woodford Green, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: 49264723-n

Contactar al vendedor

Comprar nuevo

EUR 57,65
Convertir moneda
Gastos de envío: EUR 17,38
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

Zephyr Quent
Publicado por Gitforgits Okt 2024, 2024
ISBN 10: 8197950415 ISBN 13: 9788197950414
Nuevo Taschenbuch
Impresión bajo demanda

Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This is the practical, solution-oriented book for every data scientists, machine learning engineers, and AI engineers to utilize the most of Google JAX for efficient and advanced machine learning. It covers essential tasks, troubleshooting scenarios, and optimization techniques to address common challenges encountered while working with JAX across machine learning and numerical computing projects.The book starts with the move from NumPy to JAX. It introduces the best ways to speed up computations, handle data types, generate random numbers, and perform in-place operations. It then shows you how to use profiling techniques to monitor computation time and device memory, helping you to optimize training and performance. The debugging section provides clear and effective strategies for resolving common runtime issues, including shape mismatches, NaNs, and control flow errors. The book goes on to show you how to master Pytrees for data manipulation, integrate external functions through the Foreign Function Interface (FFI), and utilize advanced serialization and type promotion techniques for stable computations.If you want to optimize training processes, this book has you covered. It includes recipes for efficient data loading, building custom neural networks, implementing mixed precision, and tracking experiments with Penzai. You'll learn how to visualize model performance and monitor metrics to assess training progress effectively. The recipes in this book tackle real-world scenarios and give users the power to fix issues and fine-tune models quickly.Key LearningsGet your calculations done faster by moving from NumPy to JAX's optimized framework.Make your training pipelines more efficient by profiling how long things take and how much memory they use.Use debugging techniques to fix runtime issues like shape mismatches and numerical instability.Get to grips with Pytrees for managing complex, nested data structures across various machine learning tasks.Use JAX's Foreign Function Interface (FFI) to bring in external functions and give your computational capabilities a boost.Take advantage of mixed-precision training to speed up neural network computations without sacrificing model accuracy.Keep your experiments on track with Penzai. This lets you reproduce results and monitor key metrics.Create your own neural networks and optimizers directly in JAX so you have full control of the architecture.Use serialization techniques to save, load, and transfer models and training checkpoints efficiently.Table of ContentTransition NumPy to JAXProfiling Computation and Device MemoryDebugging Runtime Values and ErrorsMastering Pytrees for Data StructuresExporting and SerializationType Promotion Semantics and Mixed PrecisionIntegrating Foreign Functions (FFI)Training Neural Networks with JAX 252 pp. Englisch. Nº de ref. del artículo: 9788197950414

Contactar al vendedor

Comprar nuevo

EUR 68,30
Convertir moneda
Gastos de envío: EUR 11,00
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen del vendedor

Zephyr Quent
Publicado por Gitforgits, 2024
ISBN 10: 8197950415 ISBN 13: 9788197950414
Nuevo Taschenbuch
Impresión bajo demanda

Librería: AHA-BUCH GmbH, Einbeck, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - This is the practical, solution-oriented book for every data scientists, machine learning engineers, and AI engineers to utilize the most of Google JAX for efficient and advanced machine learning. It covers essential tasks, troubleshooting scenarios, and optimization techniques to address common challenges encountered while working with JAX across machine learning and numerical computing projects.The book starts with the move from NumPy to JAX. It introduces the best ways to speed up computations, handle data types, generate random numbers, and perform in-place operations. It then shows you how to use profiling techniques to monitor computation time and device memory, helping you to optimize training and performance. The debugging section provides clear and effective strategies for resolving common runtime issues, including shape mismatches, NaNs, and control flow errors. The book goes on to show you how to master Pytrees for data manipulation, integrate external functions through the Foreign Function Interface (FFI), and utilize advanced serialization and type promotion techniques for stable computations.If you want to optimize training processes, this book has you covered. It includes recipes for efficient data loading, building custom neural networks, implementing mixed precision, and tracking experiments with Penzai. You'll learn how to visualize model performance and monitor metrics to assess training progress effectively. The recipes in this book tackle real-world scenarios and give users the power to fix issues and fine-tune models quickly.Key LearningsGet your calculations done faster by moving from NumPy to JAX's optimized framework.Make your training pipelines more efficient by profiling how long things take and how much memory they use.Use debugging techniques to fix runtime issues like shape mismatches and numerical instability.Get to grips with Pytrees for managing complex, nested data structures across various machine learning tasks.Use JAX's Foreign Function Interface (FFI) to bring in external functions and give your computational capabilities a boost.Take advantage of mixed-precision training to speed up neural network computations without sacrificing model accuracy.Keep your experiments on track with Penzai. This lets you reproduce results and monitor key metrics.Create your own neural networks and optimizers directly in JAX so you have full control of the architecture.Use serialization techniques to save, load, and transfer models and training checkpoints efficiently.Table of ContentTransition NumPy to JAXProfiling Computation and Device MemoryDebugging Runtime Values and ErrorsMastering Pytrees for Data StructuresExporting and SerializationType Promotion Semantics and Mixed PrecisionIntegrating Foreign Functions (FFI)Training Neural Networks with JAX. Nº de ref. del artículo: 9788197950414

Contactar al vendedor

Comprar nuevo

EUR 69,83
Convertir moneda
Gastos de envío: EUR 11,99
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen de archivo

Zephyr Quent
Publicado por Gitforgits, 2024
ISBN 10: 8197950415 ISBN 13: 9788197950414
Nuevo Paperback

Librería: CitiRetail, Stevenage, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Paperback. Condición: new. Paperback. This is the practical, solution-oriented book for every data scientists, machine learning engineers, and AI engineers to utilize the most of Google JAX for efficient and advanced machine learning. It covers essential tasks, troubleshooting scenarios, and optimization techniques to address common challenges encountered while working with JAX across machine learning and numerical computing projects.The book starts with the move from NumPy to JAX. It introduces the best ways to speed up computations, handle data types, generate random numbers, and perform in-place operations. It then shows you how to use profiling techniques to monitor computation time and device memory, helping you to optimize training and performance. The debugging section provides clear and effective strategies for resolving common runtime issues, including shape mismatches, NaNs, and control flow errors. The book goes on to show you how to master Pytrees for data manipulation, integrate external functions through the Foreign Function Interface (FFI), and utilize advanced serialization and type promotion techniques for stable computations.If you want to optimize training processes, this book has you covered. It includes recipes for efficient data loading, building custom neural networks, implementing mixed precision, and tracking experiments with Penzai. You'll learn how to visualize model performance and monitor metrics to assess training progress effectively. The recipes in this book tackle real-world scenarios and give users the power to fix issues and fine-tune models quickly.Key LearningsGet your calculations done faster by moving from NumPy to JAX's optimized framework.Make your training pipelines more efficient by profiling how long things take and how much memory they use.Use debugging techniques to fix runtime issues like shape mismatches and numerical instability.Get to grips with Pytrees for managing complex, nested data structures across various machine learning tasks.Use JAX's Foreign Function Interface (FFI) to bring in external functions and give your computational capabilities a boost.Take advantage of mixed-precision training to speed up neural network computations without sacrificing model accuracy.Keep your experiments on track with Penzai. This lets you reproduce results and monitor key metrics.Create your own neural networks and optimizers directly in JAX so you have full control of the architecture.Use serialization techniques to save, load, and transfer models and training checkpoints efficiently.Table of ContentTransition NumPy to JAXProfiling Computation and Device MemoryDebugging Runtime Values and ErrorsMastering Pytrees for Data StructuresExporting and SerializationType Promotion Semantics and Mixed PrecisionIntegrating Foreign Functions (FFI)Training Neural Networks with JAX Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. Nº de ref. del artículo: 9788197950414

Contactar al vendedor

Comprar nuevo

EUR 66,82
Convertir moneda
Gastos de envío: EUR 34,76
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Existen otras 3 copia(s) de este libro

Ver todos los resultados de su búsqueda