The deep learning approach combined with spectroscopic sensing techniques has shown great potential for quality evaluation of food and agro-products. Current advances in deep learning-based qualitative analysis include variety identification, geographical origin detection, adulteration recognition, and bruise detection, whereas quantitative analysis includes multiple component content prediction for fruits, grains, and crops. The main advantage of deep learning approach is the decreasing the dependence on human domain knowledge by end-to-end analysis and the improved precision and generalizability. This book discusses the current challenges of conventional chemometric methods and the emerging deep learning approach for spectral analysis. The research on exploring the learning mechanism of the 'black box' deep learning model is discussed. This book focuses on the application of deep learning approaches on quality evaluation of food and agro-products, lessons from current studies, and future perspectives.
"Sinopsis" puede pertenecer a otra edición de este libro.
GRATIS gastos de envío en Estados Unidos de America
Destinos, gastos y plazos de envíoLibrería: Grand Eagle Retail, Mason, OH, Estados Unidos de America
Paperback. Condición: new. Paperback. The deep learning approach combined with spectroscopic sensing techniques has shown great potential for quality evaluation of food and agro-products. Current advances in deep learning-based qualitative analysis include variety identification, geographical origin detection, adulteration recognition, and bruise detection, whereas quantitative analysis includes multiple component content prediction for fruits, grains, and crops. The main advantage of deep learning approach is the decreasing the dependence on human domain knowledge by end-to-end analysis and the improved precision and generalizability. This book discusses the current challenges of conventional chemometric methods and the emerging deep learning approach for spectral analysis. The research on exploring the learning mechanism of the 'black box' deep learning model is discussed. This book focuses on the application of deep learning approaches on quality evaluation of food and agro-products, lessons from current studies, and future perspectives. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Nº de ref. del artículo: 9786208223816
Cantidad disponible: 1 disponibles
Librería: California Books, Miami, FL, Estados Unidos de America
Condición: New. Nº de ref. del artículo: I-9786208223816
Cantidad disponible: Más de 20 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9786208223816_new
Cantidad disponible: Más de 20 disponibles
Librería: AussieBookSeller, Truganina, VIC, Australia
Paperback. Condición: new. Paperback. The deep learning approach combined with spectroscopic sensing techniques has shown great potential for quality evaluation of food and agro-products. Current advances in deep learning-based qualitative analysis include variety identification, geographical origin detection, adulteration recognition, and bruise detection, whereas quantitative analysis includes multiple component content prediction for fruits, grains, and crops. The main advantage of deep learning approach is the decreasing the dependence on human domain knowledge by end-to-end analysis and the improved precision and generalizability. This book discusses the current challenges of conventional chemometric methods and the emerging deep learning approach for spectral analysis. The research on exploring the learning mechanism of the 'black box' deep learning model is discussed. This book focuses on the application of deep learning approaches on quality evaluation of food and agro-products, lessons from current studies, and future perspectives. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability. Nº de ref. del artículo: 9786208223816
Cantidad disponible: 1 disponibles
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware 284 pp. Englisch. Nº de ref. del artículo: 9786208223816
Cantidad disponible: 2 disponibles
Librería: moluna, Greven, Alemania
Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Jiang HuiHui Jiang is a full professor in Jiangsu University and holds a PhD in Control Science and Engineering from the same university. His area of research includes the fabrication of olfactory and optical sensors for food analysi. Nº de ref. del artículo: 1959908231
Cantidad disponible: Más de 20 disponibles
Librería: CitiRetail, Stevenage, Reino Unido
Paperback. Condición: new. Paperback. The deep learning approach combined with spectroscopic sensing techniques has shown great potential for quality evaluation of food and agro-products. Current advances in deep learning-based qualitative analysis include variety identification, geographical origin detection, adulteration recognition, and bruise detection, whereas quantitative analysis includes multiple component content prediction for fruits, grains, and crops. The main advantage of deep learning approach is the decreasing the dependence on human domain knowledge by end-to-end analysis and the improved precision and generalizability. This book discusses the current challenges of conventional chemometric methods and the emerging deep learning approach for spectral analysis. The research on exploring the learning mechanism of the 'black box' deep learning model is discussed. This book focuses on the application of deep learning approaches on quality evaluation of food and agro-products, lessons from current studies, and future perspectives. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. Nº de ref. del artículo: 9786208223816
Cantidad disponible: 1 disponibles
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
Taschenbuch. Condición: Neu. Neuware -The deep learning approach combined with spectroscopic sensing techniques has shown great potential for quality evaluation of food and agro-products. Current advances in deep learning-based qualitative analysis include variety identification, geographical origin detection, adulteration recognition, and bruise detection, whereas quantitative analysis includes multiple component content prediction for fruits, grains, and crops. The main advantage of deep learning approach is the decreasing the dependence on human domain knowledge by end-to-end analysis and the improved precision and generalizability. This book discusses the current challenges of conventional chemometric methods and the emerging deep learning approach for spectral analysis. The research on exploring the learning mechanism of the 'black box' deep learning model is discussed. This book focuses on the application of deep learning approaches on quality evaluation of food and agro-products, lessons from current studies, and future perspectives.Books on Demand GmbH, Überseering 33, 22297 Hamburg 284 pp. Englisch. Nº de ref. del artículo: 9786208223816
Cantidad disponible: 2 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Taschenbuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering. Nº de ref. del artículo: 9786208223816
Cantidad disponible: 1 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 26403383181
Cantidad disponible: 4 disponibles