Artículos relacionados a Big Data Cyber Security Using Machine Learning: Cyber...

Big Data Cyber Security Using Machine Learning: Cyber Security - Tapa blanda

 
9786206783206: Big Data Cyber Security Using Machine Learning: Cyber Security
  • EditorialLAP LAMBERT Academic Publishing
  • Año de publicación2023
  • ISBN 10 6206783200
  • ISBN 13 9786206783206
  • EncuadernaciónTapa blanda
  • IdiomaInglés
  • Número de páginas64
  • Contacto del fabricanteno disponible

Comprar nuevo

Ver este artículo

EUR 11,00 gastos de envío desde Alemania a España

Destinos, gastos y plazos de envío

Resultados de la búsqueda para Big Data Cyber Security Using Machine Learning: Cyber...

Imagen del vendedor

Kandru Arun Kumar
ISBN 10: 6206783200 ISBN 13: 9786206783206
Nuevo Taschenbuch
Impresión bajo demanda

Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Cyber security in the context of big data is known to be a critical problem and presents a great challenge to the research community. Machine learning algorithms have been suggested as candidates for handling big data security problems. Among these algorithms, support vector machines (SVMs) have achieved remarkable success on various classification problems. However, to establish an effective SVM, the user needs to deny the proper SVM configuration in advance, which is a challenging task that requires expert knowledge and a large amount of manual effort for trial and error. Here we formulate the SVM configuration process as a bi-objective optimization problem in which accuracy and model complexity are considered as two conflicting objectives. We propose a novel hyper-heuristic framework for bi-objective optimization that is independent of the problem domain. This is the first time that a hyper-heuristic has been developed for this problem. The proposed hyper-heuristic framework consists of a high-level strategy and low-level heuristics. 64 pp. Englisch. Nº de ref. del artículo: 9786206783206

Contactar al vendedor

Comprar nuevo

EUR 43,90
Convertir moneda
Gastos de envío: EUR 11,00
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen del vendedor

Kandru Arun Kumar|Anuradha Chinta|Kunchala Little Flower
Publicado por LAP LAMBERT Academic Publishing, 2023
ISBN 10: 6206783200 ISBN 13: 9786206783206
Nuevo Tapa blanda
Impresión bajo demanda

Librería: moluna, Greven, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Arun Kumar KandruDr Arun Kumar Kandru Assoc. Professor CSE at Malla Reddy Engineering College, having 13 years of teaching experience.Dr Anuradha Chinta Asst. Professor CSE at V R Siddhartha Engineering College, having 11 years of te. Nº de ref. del artículo: 1132722034

Contactar al vendedor

Comprar nuevo

EUR 35,62
Convertir moneda
Gastos de envío: EUR 19,49
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

Kandru Arun Kumar
Publicado por LAP LAMBERT Academic Publishing, 2023
ISBN 10: 6206783200 ISBN 13: 9786206783206
Nuevo Taschenbuch
Impresión bajo demanda

Librería: AHA-BUCH GmbH, Einbeck, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Cyber security in the context of big data is known to be a critical problem and presents a great challenge to the research community. Machine learning algorithms have been suggested as candidates for handling big data security problems. Among these algorithms, support vector machines (SVMs) have achieved remarkable success on various classification problems. However, to establish an effective SVM, the user needs to deny the proper SVM configuration in advance, which is a challenging task that requires expert knowledge and a large amount of manual effort for trial and error. Here we formulate the SVM configuration process as a bi-objective optimization problem in which accuracy and model complexity are considered as two conflicting objectives. We propose a novel hyper-heuristic framework for bi-objective optimization that is independent of the problem domain. This is the first time that a hyper-heuristic has been developed for this problem. The proposed hyper-heuristic framework consists of a high-level strategy and low-level heuristics. Nº de ref. del artículo: 9786206783206

Contactar al vendedor

Comprar nuevo

EUR 44,59
Convertir moneda
Gastos de envío: EUR 11,99
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen del vendedor

Kandru Arun Kumar
ISBN 10: 6206783200 ISBN 13: 9786206783206
Nuevo Taschenbuch

Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. Neuware -Cyber security in the context of big data is known to be a critical problem and presents a great challenge to the research community. Machine learning algorithms have been suggested as candidates for handling big data security problems. Among these algorithms, support vector machines (SVMs) have achieved remarkable success on various classification problems. However, to establish an effective SVM, the user needs to deny the proper SVM configuration in advance, which is a challenging task that requires expert knowledge and a large amount of manual effort for trial and error. Here we formulate the SVM configuration process as a bi-objective optimization problem in which accuracy and model complexity are considered as two conflicting objectives. We propose a novel hyper-heuristic framework for bi-objective optimization that is independent of the problem domain. This is the first time that a hyper-heuristic has been developed for this problem. The proposed hyper-heuristic framework consists of a high-level strategy and low-level heuristics.Books on Demand GmbH, Überseering 33, 22297 Hamburg 64 pp. Englisch. Nº de ref. del artículo: 9786206783206

Contactar al vendedor

Comprar nuevo

EUR 43,90
Convertir moneda
Gastos de envío: EUR 35,00
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito